• Title/Summary/Keyword: Panel method

검색결과 2,648건 처리시간 0.03초

LCC기법을 활용한 단열외벽패널시스템의 경제성분석 (Economic Analysis of Insulation Wall Panel System using LCC Method)

  • 김민우;전규남;이건철;조병영;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.153-155
    • /
    • 2011
  • In this study, an insulation panel system that has the most excellent economic feasibility in a long term LCC viewpoint in some analysis, which determine a proper insulation panel construction method for the out wall of structures, is analyzed. As a result, in the case of a deterministic LCC analysis, the initial investment cost represents about 80,000Won/㎡ for extrusion ceramic panels. Also, although the costs of maintenance, disassembling, and disposal show no large differences compared with other panel systems, metal panels indicate a bit higher than other panel systems about 1.5 times. In the probability density function that analyzes the variation of the probabilistic cost between panel systems and its economic feasibility, metal panels show the highest cost distribution and extrusion and stone panels represent low cost distributions. In the cumulative function distribution that composites probability density functions, the extrusion ceramic panel represents the most excellent economic feasibility and reliability and that is also the most superior subject among the subjects used in this study.

  • PDF

외기와 면하는 욕실 내측벽에 압출 발포폴리스티렌 패널을 사용한 단열시공기술에 관한 연구 (A Study of Thermal insulation method using extruded and expanded Poly-ethylene panel contacted to the bathroom inner wall facing on the outside)

  • 이종진;오창원;여승의
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.11-16
    • /
    • 2005
  • This study is for the insulation construction of inner wall in a bathroom facing on the outside in the housings. This new dry construction method can be constructed by a dry panel which is bonded tiles on the extruded and expanded poly-ethylene panel in stead of the existing wet construction method. Compared to the existing method, this panel is light movably and is constructed simply. These representative construction merits are getting wide span in a bath due to reducing wall thickness and saving construction period.

  • PDF

Unsteady Analysis of 3-Dimensional Hydrofoils Using a B-Spline Based High Order Panel Method

  • Jang, Hyun-Gil;Ahn, Byoung-Kwon;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • 제12권2호
    • /
    • pp.16-31
    • /
    • 2008
  • The lifting-surface programs have been used successfully in practice for the design and global performance prediction of the marine propellers. To predict the pressures on the blade for the strength analysis, the constant panel method has been a good alternative. To meet the need for more accurate information on the pressure near the tip region and the trailing edge of the blade, the higher order panel method (HiPan, hereinafter) based on a B-spline is developed and now available. However, there is an increasing demand to get the highly reliable unsteady behavior of the pressure near the tip region by the HiPan. The ultimate goal of our efforts is to develop the fully unsteady higher order panel code for the propeller. In the present paper, we will show the numerical procedure applicable to unsteady problems of the three dimensional hydrofoil in a sinusoidal gust and heave motions.

삼각형 패널 상에 선형적으로 분포된 다이폴 강도를 갖는 패널법의 정식화 (Formulation of the Panel Method with Linearly Distributed Dipole Strength on Triangular Panels)

  • 오진안;이진태
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.114-123
    • /
    • 2020
  • A high-order potential-based panel method based on Green's theorem, with piecewise-linear dipole strength on triangular panels, is formulated for the analysis of potential flow around a three-dimensional wing. Previous low-order panel methods adopt square panels with piecewise-constant dipole strength, which results in inherent errors. Square panels can not represent a high curvature lifting body, such as propellers, since the four vertices of the square panel do not locate at the same flat plane. Moreover the piecewise-constant dipole strength induces inevitable errors due to the steps in dipole strength between adjacent panels. In this paper a high-order panel method is formulated to improve accuracy by adopting a piecewise linear dipole strength on triangular panels. Firstly, the square panels are replaced by triangular panels in order to increase the geometric accuracy in representing the shape of the object with large curvature. Next, the step difference of the dipole strength between adjacent panels is removed by adopting piecewise-linear dipole strength on the triangular panels. The calculated results by the present method is compared with analytical ones for simple non-lifting geometries, such as ellipsoid. The results for an elliptic wing with zero thickness at finite angle of attack are compared with Jordan's results. The comparison shows reasonable agrements for the both lifting and non-lifting bodies.

표면처리공법을 활용한 마감 패널 개발 (Development of Finishing Panel using Surface Treatment Method)

  • 김강민;윤섭;권해원;공민호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.57-58
    • /
    • 2019
  • Precast concrete finishing panels can be implemented in different colors, textures and designs relatively freely by different designers in different finishing materials. Therefore, we tried to develop a PC finishing panel that can be applied in the field by using various color pigment and concrete surface retardation method and polishing method.

  • PDF

NUMERICAL METHOD IN WAVE-BODY INTERACTIONS

  • MOUSAVIZADEGAN S. H.;RAHMAN M.
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.73-91
    • /
    • 2005
  • The application of Green's function in calculation of flow characteristics around submerged and floating bodies due to a regular wave is presented. It is assumed that the fluid is homogeneous, inviscid and incompressible, the flow is irrotational and all body motions are small. Two methods based on the boundary integral equation method (BIEM) are applied to solve associated problems. The first is a low order panel method with triangular flat patches and uniform distribution of velocity potential on each panel. The second method is a high order panel method in which the kernels of the integral equations are modified to make it nonsingular and amenable to solution by the Gaussian quadrature formula. The calculations are performed on a submerged sphere and some floating spheroids of different aspect ratios. The excellent level of agreement with the analytical solutions shows that the second method is more accurate and reliable.

Loose Coupling Approach of CFD with a Free-Wake Panel Method for Rotorcraft Applications

  • Lee, Jae-Won;Oh, Se-Jong;Yee, Kwan-Jung;Kim, Sang-Hun;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 2007
  • As a first step toward a complete CFD-CSD coupling for helicopter rotor load analysis, the present study attempts to loosely couple a CFD code with a source-double panel method. The far-field wake effects were calculated by a time-marching free vortex wake method and were implemented into the CFD module via field velocity approach. Unlike the lifting line method, the air loads correction process is not trivial for the source-doublet panel method. The air loads correction process between the source-doublet method and CFD is newly suggested in this work and the computation results are validated against available data for well-known hovering flight conditions.

An interactive and iterative control panel layout

  • 박성준;정의승;조항준
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1994년도 춘계공동학술대회논문집; 창원대학교; 08월 09일 Apr. 1994
    • /
    • pp.103-111
    • /
    • 1994
  • An interactive and iterative design method based on the constraint satisfaction problem (CSP) technique was developed to generate an ergonomically sound layout of a control panel. This control panel layout method attempts to incorporate a variety of relevant ergonomic principles and design constraints, and generate an optimal or, at least, a "satisfactory" solution through iterative interactions with the designer. The existing panel design and layout methods are mostly based on the optimization of single objective function formulated to reflect and trade off all ergonomic design objectives which are largely different in their nature. In fact, the problem of seeking an ergonomically sound panel design should be viewed as a multiple objective optimization problem. Furthermore, most of the design objectives should be understood as constraints rather than objectives to be optimized. Hence, a constraint satisfaction approach is proposed in this study as a framework for the panel designer to search through the design decision space effectively and make various design decisions iteratively. In order to apply the constraint satisfaction approach to the panel design procedure, the ergonomic principles such as frequency-of-use, importance, functional grouping, and sequence-of-use are formalized as CSP terms. With this formalization, a prototype system was implemented and applied to panel layout problems. The results clearly showed the effectiveness of the proposed approach since it permits designers to consider and iteratively evaluate various design constraints and ergonomic principles, and, therefore, aids the panel designer to come up with an ergonomically sound control panel layout.

고 아음속 터빈 캐스케이드 유동 해석을 위한 패널법의 압축성 보정 (Compressibility correction of the Panel Method in Flow Analysis of a High Subsonic Turbine Cascade)

  • 김학봉;김진곤;곽재수;강정식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.49-54
    • /
    • 2007
  • 오일러나 Navier-Stokes방정식을 통한 터빈 캐스케이드 유동 해석은 비교적 정확한 해를 구할 수 있으나 많은 계산 시간을 필요로 한다. 비점성, 비압축성 유동에 적용이 가능한 패널법은 빠르고 합리적인 유동 정보를 얻을수 있지만 고속 유동의 경우 압축성 보정이 반드시 이뤄져야한다. 본 논문에서는 압축성이 보정된 패널법을 이용하여 터빈 블레이드 표면의 속도 분포를 계산하였다. 그 결과, 압축성이 보정된 패널법의 결과는 실험이나 유한 체적법에 의해 계산된 결과와 잘 일치하였다.

  • PDF

고 아음속 터빈 캐스케이드 유동 해석을 위한 패널법의 압출성 보정 (Compressibility correction of the Panel Method in Flow Analysis of a High Subsonic Turbine Cascade)

  • 김학봉;김진곤;곽재수;강정식
    • 한국추진공학회지
    • /
    • 제12권1호
    • /
    • pp.23-28
    • /
    • 2008
  • 오일러나 Navier-Stokes 방정식을 통한 터빈 캐스케이드 유동 해석은 비교적 정확한 해를 구할 수 있으나 많은 계산 시간을 필요로 한다. 비점성, 비압축성 유동에 적용이 가능한 패널법은 빠르고 합리적인 유동 정보를 얻을 수 있지만 고속 유동의 경우 압축성 보정이 반드시 이뤄져야한다. 본 논문에서는 압축성이 보정된 패널법을 이용하여 터빈 블레이드 표면의 속도 분포를 계산하였다. 그 결과, 압축성이 보정된 패널법의 결과는 유한 체적법에 의해 계산된 결과와 잘 일치하였다.