• Title/Summary/Keyword: Panel inspection

Search Result 175, Processing Time 0.022 seconds

Experimental Performance Evaluation on V-shaped Butt Welding Using GMA Welding Double Wire Reel and Remote Control Torch Welding Technique (GMAW 더블 와이어 릴, 원격제어토치 용접기술을 이용한 V형 맞대기 용접 부의 실험적 성능 평가)

  • Kim, Jeong-Hyeok;Oh, Seck-Hyeog;Lee, Hae-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1339-1347
    • /
    • 2015
  • This study discusses a remote control torch system equipped with a GMAW double wire reel. The welding machine is 30m away from the wire feeder at the industrial site and the feeder is three to five meters away from the torch. Accordingly, the welders cannot control the current and voltage that meets the welding condition during work when they are working at a place that prevents them from seeing the control panel, such as inside a vehicle or tank or at a far work site. They also have no choice but to stop working to change the wire reel when it is burned out completely. Such work suspension resulting from frequent moves to adjust the current and voltage as well as to replace the wire and subsequent cooling causes welding defects. This study produced a remote control torch equipped with a double wire reel by simplifying and streamlining the existing GMAW functions to reduce the troubling issue. The remote control torch equipped with a double wire reel and the existing $CO_2$ /MAG welding torch were applied as a V-groove butt in the vertical position using 6mm rolled steel for a SM50A welding structure. After welding, the condition of welded surface beads underwent a visual inspection and radiographic inspection to analyze the welding quality inside the welded part. This study also evaluated the reduction of welding defects, cost saving, the replacing performance against the existing commercial welders, and the effects on possible compatibility.

Field Application and Maintenance of sidewalk concrete block for PV Power Generation (태양광 발전을 위한 보도형 콘크리트 블록의 현장 적용과 유지관리)

  • Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.75-83
    • /
    • 2019
  • In order to fulfill the obligation to voluntarily reduce greenhouse gas emissions under the Paris Climate Agreement, the proportion of coal and nuclear power generation is reduced worldwide and national efforts are being made to spread renewable energy including solar power generation. Korea also intends to increase the proportion of renewable energy generation to 30~35% by 2040 by introducing laws and regulations. In addition, while the country is trying to apply solar power generation to sidewalks and roads, there is no research related to it in Korea. Therefore, as a precedent study to develop solar power generation roads, solar power generation concrete blocks applicable to sidewalks and plazas were developed and the applicability was evaluated by constructing them on the site. As a result of indoor experiment, compressive strength was measured by 25.5~35.7MPa and flexural strength was measured by 5.1~10.5MPa, which showed that all domestic standards were satisfied. However, the higher the unit cement amount, the lower the strength was measured according to the mixing of the broken fine aggregate. The absorption rate was 5.7%, which satisfied the domestic standard of 7% or less. As a result of the freeze-thawing test, the reduction rate of the compressive strength after 100 cycles was up to 6.3%. As a result of measuring the settlement amount after construction, the maximum of 2.498mm was measured and irregular settlement occurred in the overall area, which is because the resolution of the sand layer was poor during construction. Maintenance techniques of sidewalk concrete block and solar panel need to be established more efficiently through long-term operation in the further.

Evaluation of Ozone Resistance and Anti-Corrosion Performance of Water Treatment Concrete according to Types of Metal Spray Coating (수처리시설용 콘크리트의 금속용사 피막 종류에 따른 내오존성 및 전기화학적 방식 성능 평가)

  • Park, Jin-Ho;Choi, Hyun-Jun;Lee, Han-Seung;Kim, Sang-yeol;Jang, Hyun-O
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • As the pollution of water resources deteriorates due to industrialization and urbanization, it is difficult to supply clean water through a water treatment method using chlorine. Therefore, the introduction of advanced water treatment facilities using ozone is on the increase. However, epoxy which is used as waterproofing and anticorrosives and stainless steel used in conventional waterproofing and anti-corrosive methods have deteriorated because of the strong oxidizing power of ozone, causing problems such as leaking. Moreover, it even causes the durability degradation of a concrete. Therefore, in this study, metal spraying system was used as the means of constructing a metal panel with excellent ozone resistance and chemical resistance which is an easier method than an existing construction method. Ozone resistance was evaluated in accordance with the type of metal sprayed coatings to develop a finishing method which can prevent the concrete structure of water treatment facilities from deterioration. Furthermore, electrochemical stability in actual sewage treatment plant environment was evaluated. Experimental results showed that Ti has superior ozone resistance after spraying and the electrochemical stability in the sewage treatment plant environment showed that Ti has the highest polarization resistance of $403.83k{\cdot}{\Omega}{\cdot}cm^2$, which ensures high levels of durability.

Evaluation of Steel Tube Connection in Precast Concrete Double Wall System (프리캐스트 콘크리트 더블월 시스템의 각형 강관 연결부 성능평가 )

  • Yujae Seo;Hyunjin Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2023
  • In this study, a double wall system is introduced, which was invented to simplify the complicated manufacturing process of the existing precast concrete (PC) double wall systems and to remove defects such as laitance that may occur during the production of concrete panels. An experimental study was conducted to investigate the tensile resisting capacity of the steel tube which is embedded in the precast concrete panel to keep the spacing between PC panels and to prevent damage of the PC panels during transportation and casting concrete onsite. The experiment was planned to determine the detail of effective steel tube connection considering the steel plate treatment method according to the formation of the opening, the presence of embedded concrete, and the reinforcement welding for additional dowel action as key variables. As a result, the ultimate tensile strength increased by 20-30% compared to the control specimen (ST) except for the steel tube specimen (ST_CP) which has steel plates bent inward at the end part of the steel tube. Since the specimen (ST_CON) filled with concrete inside the control specimen has no additional process and cost for the steel tube connections compared to the control specimen during the production of the developed double wall system, it is determined to be the appropriate detail of steel tube connection.

Analysis of the application of image quality assessment method for mobile tunnel scanning system (이동식 터널 스캐닝 시스템의 이미지 품질 평가 기법의 적용성 분석)

  • Chulhee Lee;Dongku Kim;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.365-384
    • /
    • 2024
  • The development of scanning technology is accelerating for safer and more efficient automated inspection than human-based inspection. Research on automatically detecting facility damage from images collected using computer vision technology is also increasing. The pixel size, quality, and quantity of an image can affect the performance of deep learning or image processing for automatic damage detection. This study is a basic to acquire high-quality raw image data and camera performance of a mobile tunnel scanning system for automatic detection of damage based on deep learning, and proposes a method to quantitatively evaluate image quality. A test chart was attached to a panel device capable of simulating a moving speed of 40 km/h, and an indoor test was performed using the international standard ISO 12233 method. Existing image quality evaluation methods were applied to evaluate the quality of images obtained in indoor experiments. It was determined that the shutter speed of the camera is closely related to the motion blur that occurs in the image. Modulation transfer function (MTF), one of the image quality evaluation method, can objectively evaluate image quality and was judged to be consistent with visual observation.

An effective classification method for TFT-LCD film defect images using intensity distribution and shape analysis (명암도 분포 및 형태 분석을 이용한 효과적인 TFT-LCD 필름 결함 영상 분류 기법)

  • Noh, Chung-Ho;Lee, Seok-Lyong;Zo, Moon-Shin
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1115-1127
    • /
    • 2010
  • In order to increase the productivity in manufacturing TFT-LCD(thin film transistor-liquid crystal display), it is essential to classify defects that occur during the production and make an appropriate decision on whether the product with defects is scrapped or not. The decision mainly depends on classifying the defects accurately. In this paper, we present an effective classification method for film defects acquired in the panel production line by analyzing the intensity distribution and shape feature of the defects. We first generate a binary image for each defect by separating defect regions from background (non-defect) regions. Then, we extract various features from the defect regions such as the linearity of the defect, the intensity distribution, and the shape characteristics considering intensity, and construct a referential image database that stores those feature values. Finally, we determine the type of a defect by matching a defect image with a referential image in the database through the matching cost function between the two images. To verify the effectiveness of our method, we conducted a classification experiment using defect images acquired from real TFT-LCD production lines. Experimental results show that our method has achieved highly effective classification enough to be used in the production line.

Impact of Fire Demand on Fire Service Budget (소방수요가 소방예산에 미치는 영향)

  • Lee, Wonjoo;Lim, Jae Hoon;Moon, Kwang Min
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.125-134
    • /
    • 2020
  • This paper aimed to statistically analyze the impact of fire needs not considered in previous reports based on preventive and preparedness strategies of fire administration and fire budget.. The panel data came from 16 metropolitan councils from 2008 to 2018 and was statistically analyzed based on the preventive measures of the fire administration (agreement for building permission, specific target for fire-fighting, public use facilities, and special fire inspection [SFI]), preparedness of the fire administration (fire safety education [FSE]), response of the fire administration (mobilization for fire suppression [MFS] and mobilization for ambulance service [MAS]), and fire budget. In the results, SFI, FSE, and MFS had a significant negative influence on the fire budget. Meanwhile, MAS had a significant positive effect on the fire budget (p < 0.01). These results reflect public policy in Korea; there has been a paradigm shift in fire administration: from disaster acceptance (focusing on recovery) to disaster response (focusing on field response) to disaster preparedness (focusing on preparedness).

Study on an Evaluation of Remote Control Torch Performance to reduce CO2 Welding Defects (CO2 용접결함 감소를 위한 원격 제어 토치 성능 평가 연구)

  • Kim, Jeong-Hyeok;Oh, Seck-Hyeog;Lee, Hae-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6282-6288
    • /
    • 2014
  • $CO_2$ welding is used widely in the field. On the other hand, welding defects occur when welders cannot adjust the current and voltage needed for welding and have to stop working to adjust the current and voltage, causing sudden cooling down of the welding structure inside a vehicle or tank where the control panel is invisible or when work site is far. This study used three types of existing $CO_2$ welders. This also applied SS400 rolled steel for welding structural purposes for remote control torch welding, perform a welding test through v-groove butt welding with a remote control torch and existing $CO_2$ welding torch, conducted visual inspection on the appearance of a welded top bead. In addition, the appearance quality of the welding part was monitored mainly through penetrant testing and a bending test to evaluate the welding defect reduction and the effect on the performance and compatibility by replacing the existing welder.

Assessment of Masks Used by Healthcare Workers: Development and Validation of a Mask Qualitative Assessment Tool (MQAT)

  • Gharibi, Vahid;Cousins, Rosanna;Mokarami, Hamidreza;Jahangiri, Mehdi;Keshavarz, Mohammad A.;Shirmohammadi-Bahadoran, Mohammad M.
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.364-371
    • /
    • 2022
  • Background: Respiratory masks can provide healthcare workers with protection from biological hazards when they have good performance. There is a direct relationship between the visual specifications of a mask and its efficacy; thus, the aim of this study was to develop tools for qualitative assessment of the performance of masks used by healthcare workers. Methods: A mixed-methods design was used to develop a qualitative assessment tool for medical face masks (MFM) and particle filtering half masks (PFHM). The development of domains and items was undertaken using observation and interviews, the opinions of an expert panel, and a review of texts and international standards. The second phase evaluated the psychometric properties of tools. Finally, the validated Mask Qualitative Assessment Tools (MQAT) were used to assess six samples from 10 brands of the two types of masks. Results: MQAT-MFM and MQAT-PHFM shared 42 items across seven domains: "cleanliness," "design," "marking, labeling and packaging," "mask layers," "mask strap," "materials and construction," and "nose clip." MQAT-MFM included one additional item. MQAT-PHFM included another nine items associated with an eighth "Practical Performance" domain, and the valve version had another additional "Exhalation Valve" domain and six items. The evaluation indicated 80% compliance for MFM and 71% compliance for PFHM. "Marking, labeling and packaging" and "Layers" were associated with the least compliance in both types of masks and should be checked carefully for defining mask quality. Conclusion: MQAT can be used for immediate screening and initial assessment of MFM and PHFM through appearance, simple tools, and visual inspection.

Introduction and Research Trends on Micro LED Technology (마이크로 LED 기술 소개 및 연구 동향)

  • Moojin Kim
    • Advanced Industrial SCIence
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2024
  • Currently, micro LEDs (Light Emitting Diode) are attracting attention in the lighting field along with next-generation displays and have advantages such as high luminance, operating speed, energy efficiency, and long-term driving. It is predicted to bring new innovations in smartphones, televisions, and wearable electronic devices. These micro displays are self-luminous displays that emit light by themselves by being implemented as pixels composed of micrometer-sized LED devices. The main manufacturing processes can be divided into crystal growth, patterning and etching, chip separation and transfer, bonding and wiring, panel assembly and encapsulation, inspection, and quality management. Recently, this technology has developed at a rapid pace, and companies are expanding their investments in these fields. According to recent market research results, the micro LED display market is expected to continue to grow, and the main development direction of development can be summarized as manufacturing process improvement, material innovation, and driving technology development. It is believed that commercialization will accelerate through these studies and lead to innovation in the display industry with high performance and various application possibilities.