• 제목/요약/키워드: Panel Structures

검색결과 645건 처리시간 0.024초

Bottom ash를 이용한 경량판넬의 특성 연구(2) (A Study on the acoustic characteristic of the Light weight Concrete Pallet using bottom ash)

  • 정갑철;이성호;정진연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.384-387
    • /
    • 2006
  • Recently, the method of the apartment building design has been changed from wall type structures to moment structures. With like this reason, dry walls we used plentifully. Especially, the gypsum board was used from previously plentifully however the weak point of it is difficult to maintain because it weak strength. For the improvement of gypsum board, light weight concrete panel using cement board is used recently. As this study is the research of the series t on the development of non-bearing light weight concrete panel using bottom ash, the purpose of this study is to obtain basic data for application in the field. The results are that the structure 1 satisfies domestic standard concerned with sound insulation between households at the laboratory and field test.

  • PDF

고속전철용 주름판넬구조의 등가평판모델 및 방사소음 (Equivalent Plate Model and Acoustic Power Radiation of the Corrugated Panel Structures for High Speed Train)

  • 장준호;이상윤;홍성철;이우식
    • 한국철도학회논문집
    • /
    • 제2권3호
    • /
    • pp.26-35
    • /
    • 1999
  • The acoustic power reduction method can be used to design a quiet structure. To calculate the acoustic power radiated from a vibrating structure, the dynamic responses have to be determined. It is not easy to analyse the structure composed of the corrugated panels because of the structural complexity and the long analysing time. To make up for these defects, the equivalent orthotropic panel is presented. Also the acoustic power prediction method of the vibrating structures is proposed. As examples, the equivalent material properties of the corrugated plates are obtained and the acoustic powers of the floor structure are calculated at several frequency regions for the Korean High Speed Train.

  • PDF

바텀애쉬를 이용한 EPS경량콘크리트패널의 차음성능에 관한 실험적 연구 (The Experiment Study on Site Application of the Light weight Concrete Panel Using Bottom Ash)

  • 선정수;김하석;서정필;강철;정갑철;김진만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.645-648
    • /
    • 2006
  • Recently, the method of the apartment building design has been changed from wall type structures to rahmen structures. With like this reason, dry walls are used plentifully. Especially, the gypsum board was used from previously plentifully however the weak point of it is difficult to maintain because it weak strength. For the improvement of gypsum board, light weight concrete panel using cement board is used recently. As this study is the research of the series t on the development of non-bearing light weight concrete panel using bottom ash, the purpose of this study is to obtain basic data for application in the field. The results are as follows. structure 1 satisfy domestic standard concerned with sound insulation between households at the laboratory and field test.

  • PDF

시지각이론을 이용한 주택설계 프리젠테이션 체계화에 관한 연구 -프리젠테이션 판넬 구성을 중심으로- (A Study on the Systematic Housing Plan Presentation Using Visual Perception Theories -Focused on the Composition of Presentation Panel-)

  • 이화숙
    • 한국주거학회논문집
    • /
    • 제12권2호
    • /
    • pp.77-85
    • /
    • 2001
  • Along with the development of creative design ideas, how to effectively present design concepts is also an important consideration on housing plan process. This could consequently make it possible to automate presentations. In spite of such needs of presentations any significant efforts for the systematic design presentation have not been made yet. The research goals established in order to solve these problems are to develop structures of presentation and analyze the cases of it. This paper explains structures of housing plan presentations in two ways: the compositional elements of panel presentations and the relationships among the elements. The elements include a project title, a synopsis, design concepts, building layouts, floor plan1 and 2, longitudinal and latitudinal elevations, sections, projection and perspective views, and model photographs. Among various relationships among panel compositional elements this study uses relationships based on the Gestalt theory, the balance theory by Rudolf Arnheim and the optical array theory by Gibson. The relationships investigated on the basis of the visual perception theories include the relationships between compositional elements and background space, visual weight balance, horizontal and vertical balances, grouping, and visual layout patterns.

  • PDF

점용접된 차량 안전벨트 앵커의 과부하해석 및 $J_e$에 의한 피로수명예측 (Overload Analysis and $J_e$ Based Fatigue Life Prediction of Spot-Welded Auto Seat Belt Anchors)

  • 최진용;이형일
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.662-670
    • /
    • 2001
  • We evaluate the effectiveness and validity of J(sub)e, which comprehensively describes the effects of specimen geometry and loading type, in predicting the fatigue life of auto seat belt anchor panel. We first simplify the heat affected zone model to reduce the number of finite elements. We then establish finite element models reflecting the actual overload behavior of 3 types of seat belt anchor specimens. Using finite element models elaborately established, we obtain the effective crack driving parameter J(sub)e composed of its ductility-dependent modal components. It is confirmed that the J(sub)e concept successfully predicts the fatigue life of multi-spot welded panel structures represented by auto seat belt anchors here.

ALC 패널 커튼월용 부품 Primary Anchor의 해석적 연구 (An Analytical Study on Primary Anchor Unit for ALC Panel Curtain-wall)

  • 윤명호;유창현
    • 복합신소재구조학회 논문집
    • /
    • 제2권1호
    • /
    • pp.8-14
    • /
    • 2011
  • 본 연구는 Primary Anchor의 비선형 유한요소해석을 통해 구조적 성능을 파악하는데 목적이 있다. Primary Anchor Unit은 ALC 패널 커튼월과 RC 슬래브 또는 주골조 사이에 연결장치로 사용할 수 있다. 항복강도, 초기강성과 최대하중과 같은 구조적 특성을 구하고 자세히 비교분석하였다.

Stability of tow-steered curved panels with geometrical defects using higher order FSM

  • Fazilati, Jamshid
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.25-37
    • /
    • 2018
  • For the first time, the parametric instability characteristics of tow-steered variable stiffness composite laminated (VSCL) cylindrical panels is investigated using B-spline finite strip method (FSM). The panel is considered containing geometrical defects including cutout and delamination. The material properties are assumed to vary along the panel axial length of any lamina according to a linear fiber-orientation variation. A uniformly distributed inplane longitudinal loading varies harmoni-cally with time is considered. The instability load frequency regions corresponding to the assumed in-plane parametric load-ing is derived using the Bolotin's first order approximation through an energy approach. In order to demonstrate the capabili-ties of the developed formulation in predicting stability behavior of the thin-walled VSCL structures, some representative results are obtained and compared with those in the literature wherever available. It is shown that the B-spline FSM is a proper tool for extracting the stability boundaries of perforated delaminated VSCL panels.

Higher order static analysis of truncated conical sandwich panels with flexible cores

  • Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1333-1354
    • /
    • 2015
  • A higher order analytical solution for static analysis of a truncated conical composite sandwich panel subjected to different loading conditions was presented in this paper which was based on a new improved higher order sandwich panel theory. Bending analysis of sandwich structures with flexible cores subjected to concentrated load, uniform distributed load on a patch, harmonic and uniform distributed loads on the top and/or bottom face sheet of the sandwich structure was also investigated. For the first time, bending analysis of truncated conical composite sandwich panels with flexible cores was performed. The governing equations were derived by principle of minimum potential energy. The first order shear deformation theory was used for the composite face sheets and for the core while assuming a polynomial description of the displacement fields. Also, the in-plane hoop stresses of the core were considered. In order to assure accuracy of the present formulations, convergence of the results was examined. Effects of types of boundary conditions, types of applied loads, conical angles and fiber angles on bending analysis of truncated conical composite sandwich panels were studied. As, there is no research on higher order bending analysis of conical sandwich panels with flexible cores, the results were validated by ABAQUS FE code. The present approach can be linked with the standard optimization programs and it can be used in the iteration process of the structural optimization. The proposed approach facilitates investigation of the effect of physical and geometrical parameters on the bending response of sandwich composite structures.

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.

LIQUID CRYSTAL DISPLAYS(LCDs)

  • Jeon, Young-Jae
    • Journal of Photoscience
    • /
    • 제5권3호
    • /
    • pp.137-141
    • /
    • 1998
  • The current status of flat panel display (FPD) technologies is outlined, with emphasis on liquid crystal displays(LCDs). The principles of a number of LCDs are explained and compared with alternative technologies on the flat panel market. Recently annuounced LCDs, their structures, and their underlying technologies are summarized and compared.

  • PDF