• Title/Summary/Keyword: Panel Details

Search Result 79, Processing Time 0.029 seconds

Development and Field Application of Pultruded Composite Bridge Deck (인발성형 복합소재 교량 바닥판의 개발 및 현장적응)

  • 이성우;김병석;박신전;박성용;김성태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.119-126
    • /
    • 2003
  • In the conventional reinforced-concrete bridge deck, concrete and steels are likely to be deteriorated and corroded under the influence of noxious environment. To cope with these problems caused in the conventional reinforced-concrete bridge deck, pultruded composite bridge deck having light weight, high strength, corrosion resistence and durability is developed. Based on the previous study, Pultruded composite bridge deck is designed. For the DB24 truck load finite element analysis is performed to verify whether it meets both strength and serviceability design criteria. For the fabricated and assembled deck panel, structural testings are conducted. This paper present structural details and field application and testing results of composite bridge deck are presented. of composite bridge deck.

  • PDF

A Study on the Development of Roof Integrated PV Module (Focused on the Prefab Building System) (지붕재 일체형 태양전지 모듈의 개발에 따른 내구성 평가 (조립식 건축시스템을 중심으로))

  • Yi, So-Mi;Noh, Ji-Hee;Lee, Eung-Jik
    • KIEAE Journal
    • /
    • v.6 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. Architecture considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully refelected from the early stage of BIPV module design. Trial product of BIPV module are manufactured and sample construction details for demonstration building are purposed. Therefore, this paper intends to advanced its practical use by proposing how to get integrated PV system which can be applied to prefab building material, and how to apply it.

An Experimental Study and Transient Simulations of the Radiant Heating Floor Panel by Using Finite Difference Methods (유한차분법(有限差分法)을 이용한 온수온돌(溫水溫突) 바닥구조체(構造體)의 비정상(非正常) 열전달(熱傳達) 해석(解析)과 실험(實驗) 연구(硏究))

  • Sohn, J.Y.;Chung, K.S.;Park, B.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.69-77
    • /
    • 1991
  • "Ondol" have been used in residential buildings for several thousands years in Korea. The traditional "Ondol" heating system of Korea has changed into the radiant heating system with piping embedded in floors or slabs. This study reports the results of transient experiments performed on a radiant heating system and enclosure. The paper presents some details of the thermal response of slab-heated buildings to varying patterns of heat input. Furthermore, I'll compare the results of experimentation with the ones of the numerical simulation by using the explicit and implicit forms of the finite difference methods (FDM). The study has contributed to testify the feasibility of numerical analysis, and the understanding of the transient behavior of radiant heating panels and enclosure exposed to this type of heating system.

  • PDF

An a-D film for flat panel displays prepared by FAD

  • Liu, Xianghuai;Mao, Dongsheng
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.7-14
    • /
    • 1998
  • Details are given of an study of the characteristics of field-induced electron emission from hydrogen-free high $sp^3$ content(>90%) amorphous diamond (a-D) film deposited on heavily doped ($\rho$<0.01 $\Omega\cdot\textrm{cm}$) n-type monocrystalline Si(111) substrate. It is demonstrated that a-D film has excellent electron field emission properties. Emission current can reach 0.9 $\mu$A at applied field as low as 1 V/$\mu\textrm{m}$, and emission current density can be obtained about several mA/$\textrm{cm}^2$. The emission current is stable when the beginning current is at 50 $\mu$A within 72 hours. Uniform fluorescence display of electron emission from whole face of the a-D film under the electric field of 10~20 V/$\mu\textrm{m}$ was also observed. It can be considered that the contribution of excellent electron emission property results from its smooth, uniform, amorphous surface and high $sp^3$ content of the a-D films.

  • PDF

Experimental Study on Pultruded Composite Bridge Deck (인발성형 복합소재 교량 바닥판의 실험적 거동분석)

  • 이성우;김제인;김병석;배두병;박성용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.357-364
    • /
    • 2003
  • In the conventional reinforced-concrete bridge deck, concrete and steels are likely to be deteriorated and corroded under the influence of noxious environment. To cope with these problems caused in the conventional reinforced-concrete bridge deck, pultruded composite bridge deck having light weight, high strength, corrosion resistance and durability is developed. For the DB24 truck load pultruded composite bridge deck is designed and fabricated. For the fabricated and assembled deck panel, structural testing such as flexural test, local fatigue test, flexural fatigue test are conducted to verify the deck capacity experimentally. In this paper design for deck profile, details of connection and experimental results of composite bridge deck are presented.

  • PDF

Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details (단면 상세가 변화된 LB-DECK의 균열하중에 대한 실험적 연구)

  • Youn, Seok-Goo;Cho, Gyu-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.657-665
    • /
    • 2011
  • LB-DECK, a precast concrete panel type, is a permanent concrete deck form used as a formwork for cast-in-place concrete pouring at bridge construction site. LB-DECK consists of 60 mm thick concrete slab and 125 mm height Lattice-girders partly embedded in the concrete slab. These decks have been applied to the bridges, which girder spacings are short enough to resist longitudinal cracking caused by construction loads. This paper presents experimental research work conducted to evaluate the cracking load of LB-DECKs designed for long span bridge decks. Twenty four non-composite beams and four composite beams are fabricated considering three design variables of thickness of concrete slab, height of lattice-girder, and diameter of top-bar. Static loads controlled by displacements are applied to test beams to obtain cracking and ultimate loads. Vertical displacements at the center of beams, strains of top-bar, crack propagation in concrete slab, and final failure modes are carefully monitored. The obtained cracking loads are compared to the analytical results obtained by elastic analyses. Long-term analyses using age-adjusted effective modulus method (AEMM) are also conducted to investigate the effects of concrete shrinkage on the cracking loads. Based on the test results, the tensile strength and the design details of LB-DECKs are discussed to prevent longitudinal cracking of long span bridge decks.

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.

Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls

  • Mansouri, Iman;Arabzadeh, Ali;Farzampour, Alireza;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2020
  • Steel plate shear walls are recently used as efficient seismic lateral resisting systems. These lateral resistant structures are implemented to provide more strength, stiffness and ductility in limited space areas. In this study, the seismic behavior of the multi-story steel frames with steel plate shear walls are investigated for buildings with 4, 8, 12 and 16 stories using verified computational modeling platforms. Different number of steel moment bays with distinctive lengths are investigated to effectively determine the deflection amplification factor for low-rise and high-rise structures. Results showed that the dissipated energy in moment frames with steel plates are significantly related to the inside panel. It is shown that more than 50% of the dissipated energy under various ground motions is dissipated by the panel itself, and increasing the steel plate length leads to higher energy dissipation capability. The deflection amplification factor is studied in details for various verified parametric cases, and it is concluded that for a typical multi-story moment frame with steel plate shear walls, the amplification factor is 4.93 which is less than the recommended conservative values in the design codes. It is shown that the deflection amplification factor decreases if the height of the building increases, for which the frames with more than six stories would have less recommended deflection amplification factor. In addition, increasing the number of bays or decreasing the steel plate shear wall length leads to a reduction of the deflection amplification factor.

An analysis of the production conditions for small-sized women's jacket products - Focusing on young contemporary brands for spring/summer 2021 - (여성복 스몰사이즈 재킷 제품 생산실태- 2021년 S/S 영컨템포러리 브랜드를 중심으로 -)

  • Lee, Yujin;Jang, Jeongah
    • The Research Journal of the Costume Culture
    • /
    • v.29 no.6
    • /
    • pp.849-864
    • /
    • 2021
  • This study analyzed product conditions in terms of "size system," "clothing construction depending on fit," "details," "colors," and "prices," with an emphasis on young contemporary brands for spring/summer 2021, in order to provide basic data for the development of small-sized women's jackets. Out of 96 domestic and foreign brands, the study analyzed 254 small-sized jacket products from 23 brands that produce size-XS jackets. First, when examining the sizes for women's jackets, we found that 8 out of the 23 brands offer a size-XXS option. After conducting tree analysis to analyze the factors affecting the production of size-XXS, the study found significant results in the areas of "distinction between domestic and foreign brands" and "product price." Second, after categorizing small-sized women's jackets into 3 categories-fit-slim, basic, and straight-the study analyzed clothing construction elements depending on fit. This seasons mainly feature straight-fit's hip-line length jacket, a 4-panel pattern, and a panel without a waist dart. Third, the study, through the analysis of the colors of small-sized women's jackets, found a higher frequency of colors in the order of black (23.0%), white (13.3%), and beige tones (10.1%), with additional colors such as sky blue, rose pink, and aquamarine in production, which exhibit the senses of the seasons. Price analysis revealed that small-sized jackets constituted a price range at the mid-to-low end, as in ₩50,000-100,000 (30.3%), ₩100,000-150,000 (19.3%), and ₩150,000-200,000 (11.8%).

Damage and deformation of new precast concrete shear wall with plastic damage relocation

  • Dayang Wang;Qihao Han;Shenchun Xu;Zhigang Zheng;Quantian Luo;Jihua Mao
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.385-403
    • /
    • 2023
  • To avoid premature damage to the connection joints of a conventional precast concrete shear wall, a new precast concrete shear wall system (NPSW) based on a plastic damage relocation design concept was proposed. Five specimens, including one monolithic cast-in-place concrete shear wall (MSW) as a reference and four NPSWs with different connection details (TNPSW, INPSW, HNPSW, and TNPSW-N), were designed and tested by lateral low-cyclic loading. To accurately assess the damage relocation effect and quantify the damage and deformation, digital image correlation (DIC) and conventional data acquisition methods were used in the experimental program. The concrete cracking development, crack area ratio, maximum residual crack width, curvature of the wall panel, lateral displacement, and deformed shapes of the specimens were investigated. The results showed that the plastic damage relocation design concept was effective; the initial cracking occurred at the bottom of the precast shear wall panel (middle section) of the proposed NPSWs. The test results indicated that the crack area ratio and the maximum residual crack width of the NPSWs were less than those of the MSW. The NPSWs were deformed continuously; significant distortions did not occur in their connection regions, demonstrating the merits of the proposed NPSWs. The curvatures of the middle sections of the NPSWs were lower than that of the MSW after a drift ratio of 0.5%. Among the NPSWs, HNPSW demonstrated the best performance, as its crack area ratio, concrete damage, and maximum residual crack width were the lowest.