• Title/Summary/Keyword: Panchromatic Aerial Photo

Search Result 7, Processing Time 0.025 seconds

A Study on Semi-automatic Feature Extraction Using False Color Aerial Image (천연색 항공영상을 이용한 지형요소 반자동 추출에 관한 연구)

  • 김감래;김경록;전호원
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.109-115
    • /
    • 2001
  • Recently, in accordance with the introduction of Digital Photogrammetry Systems the use of Digital ortho-photo images have increased and progressed in the study which extract the features from digital ortho-photo image semi-automatically or automatically. However, there are a limit. It has proved in many studies that recognition of the attribution or the features from panchromatic aerial photo is restricted. In this study, I compared color aerial images with panchromatic aerial images and analyzed the characteristics of color aerial images and feature entities which can be extracted semi-automatically. I analyzed extracted feature entities are compared with digital map at a scale of 1:5,000 have constructed in National Geography Institute. With this result, I analyzed the capability of feature extraction and proposed a plan for the study in the future.

  • PDF

Change Detection of a Small Town Area from Multi-Temporal Aerial Photos using Image Differencing and Image Ratio Techniques (다시기 항공사진으로부터 영상대차법과 영상대비법을 이용한 소도읍 지역의 변화 검출)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Lee, Dong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.116-124
    • /
    • 2008
  • This study presents the application of multi-temporal and multi-scale panchromatic aerial photos for change detection in a small urban area. For aerial photos of the scale of 1:20,000 taken in 1987 and 1996 and the scale of 1:37,500 taken in 2000. Pre-processing that make the same conditions to all of the aerial photos was carried out through geometric correction, registration, contrasting, resamplimg, and mosaicking and then change detection were carried out respectively by image differencing and image ratio techniques. As a result, the change of urban features and landcover were able to be detected from panchromatic aerial photos that is single-band images and then the detected change results were compared between both techniques.

  • PDF

A Study on Automatic Extraction of Buildings Using LIDAR with Aerial Imagery (LIDAR 데이터와 항공사진을 이용한 건물의 자동추출에 관한 연구)

  • 이영진;조우석
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.471-477
    • /
    • 2003
  • This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were ${\pm}$8.1cm, ${\pm}$24.7cm, ${\pm}$35.9cm, respectively.

  • PDF

Land Cover Object-oriented Base Classification Using Digital Aerial Photo Image (디지털항공사진영상을 이용한 객체기반 토지피복분류)

  • Lee, Hyun-Jik;Lu, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.105-113
    • /
    • 2011
  • Since existing thematic maps have been made with medium- to low-resolution satellite images, they have several shortcomings including low positional accuracy and low precision of presented thematic information. Digital aerial photo image taken recently can express panchromatic and color bands as well as NIR (Near Infrared) bands which can be used in interpreting forest areas. High resolution images are also available, so it would be possible to conduct precision land cover classification. In this context, this paper implemented object-based land cover classification by using digital aerial photos with 0.12m GSD (Ground Sample Distance) resolution and IKONOS satellite images with 1m GSD resolution, both of which were taken on the same area, and also executed qualitative analysis with ortho images and existing land cover maps to check the possibility of object-based land cover classification using digital aerial photos and to present usability of digital aerial photos. Also, the accuracy of such classification was analyzed by generating TTA(Training and Test Area) masks and also analyzed their accuracy through comparison of classified areas using screen digitizing. The result showed that it was possible to make a land cover map with digital aerial photos, which allows more detailed classification compared to satellite images.

A Study of on the Forest Map Update Using Orthorecified High Resolution Satellite Imagery Data (고해상도 정사위성영상을 이용한 임상도 수정에 관한 연구)

  • 성천경;조정호
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.571-577
    • /
    • 2004
  • The operational availability of multispactal high-resolution satellite imagery, opens up new possibilities for updating forest stand map. Compared with information acquired by traditional methods (Panchromatic Aerial Photo), these data offer a number of advantages, In this study used 1m resolution and 4 band multispectral, which are capability to update forest map of kind of tree. Therefore, high-resolution satellite imagery is good method for updating forest map in the future.

  • PDF

A Study of on the Forest Map Update Using Orthorecified High Resolution Satellite Imagery Data (고해상도 정사위성영상을 이용한 임상도 수정에 관한 연구)

  • 성천경;조정호
    • Spatial Information Research
    • /
    • v.12 no.2
    • /
    • pp.127-135
    • /
    • 2004
  • The operational availability of multispectral high-resolution satellite imagery, opens up new possibilities for updating forest map. Compared with information acquired by traditional methods (Panchromatic Aerial Photo), these data of for a number of advantages. In this study used 1m spatial resolution and 4 multispectral band, which are capability to update forest map of kind of tree. From the result of this study, First, the visual analysis of the colour composites of the multispectral data made it possible to distinguish some species(conifer, broad-leaved, un-stocked, arable land). Second, forest map and orthorectiffd satellite imagery are not match in the boundary of forest, therefore work have some troubles in the modification of forest map. Third, the distinguish from age-class, girth-class and density are much need experience and skillful about sample such as aerial photo.

  • PDF

Automatic Extraction of Buildings using Aerial Photo and Airborne LIDAR Data (항공사진과 항공레이저 데이터를 이용한 건물 자동추출)

  • 조우석;이영진;좌윤석
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.307-317
    • /
    • 2003
  • This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were 8.1cm, 24.7cm, 35.9cm, respectively.