• Title/Summary/Keyword: Panaxadiol

Search Result 87, Processing Time 0.026 seconds

Species Differences of Dammarane Aglycones of Ginsengs (한국산(韓國産) 및 외국산(外國産) 인삼(人蔘)의 성분(成分) 비교(比較))

  • Woo, Lin-Keun;Han, Byung-Hoon;Park, Dae-Sung;Lah, Woon-Lyong
    • Korean Journal of Pharmacognosy
    • /
    • v.4 no.4
    • /
    • pp.181-184
    • /
    • 1973
  • In the light of quality comparison the ratio of panaxadiol and panaxatriol contents was assayed in the extract of various ginseng products, whose origin of production and species of the original plants are different. Aglycone compositions of other ginsengs were not comparable with Korean ginseng in their ratio of panaxadiol and panaxatriol contents of dammarane glycosides.

  • PDF

Panaxadiol Arrests Cell Cycle by Elevating $p21^{WAF1/CIP1}$

  • Choi, Joon-Seok;Jin, Ying-Hua;Shin, Soon-A;Lee, Kwang-Yeol;Park, Jeong-Hill;Lee, Seung-Ki
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.168.1-168.1
    • /
    • 2003
  • We show that panaxadiol (PD), a ginseng saponin with a dammarane skeleton, selectively interferes with the cell cycle in human cancer cell lines. PD inhibited DNA synthesis in a dose-dependent manner with $IC_{50}$ values ranging from 0.8 $\mu$M-1.2 $\mu$M in SK-HEP-1 cells and HeLa cells. PD-treated cells were arrested at G1/S phase, shich coincided well with decreases in Cyclin A-Cdk2 activity, but not in Cyclin E-Cdk2 and Cdc2 activities. The intracellular levels of $p21^{WAF1/CIP1}$ were significantly and selectively elevated in a dose and time-dependent manners in PD-treated HeLa cells. (omitted)

  • PDF

Panaxadiol saponins treatment caused the subtle variations in the global transcriptional state of Asiatic corn borer, Ostrinia furnacalis

  • Liu, Shuangli;Xu, Yonghua;Gao, Yugang;Zhao, Yan;Zhang, Aihua;Zang, Liansheng;Wu, Chunsheng;Zhang, Lianxue
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.123-134
    • /
    • 2020
  • Background: The lepidopteran Asiatic corn borer (ACB), Ostrinia furnacalis (Guenee), has caused huge economic losses throughout the Asian-Western Pacific region. Usually, chemical pesticides are used for the control, but excessive use of pesticides has caused great harm. Therefore, the inartificial ecotypic pesticides to ACB are extremely essential. In our previous study, we found that panaxadiol saponins (PDS) can effectively reduce the harm of ACB by causing antifeedant activity. Therefore, it is necessary to reveal the biological molecular changes in ACB and the functionary mechanism of PDS. Methods: We analyzed the global transcription of ACB with different PDS concentration treatment (5 mg/mL, 10 mg/mL, and 25 mg/mL) by high-throughput sequencing and de novo transcriptome assembly method. Results: PDS treatment could cause the changes of many gene expressions which regulate its signal pathways. The genes in peroxisome proliferator-activated receptor (PPAR) signaling pathway were significantly downregulated, and then, the downstream fatty acid degradation pathway had also been greatly affected. Conclusion: Through this experiment, we hypothesized that the occurrence of antifeedant action of ACB is because the PDS brought about the downregulation of FATP and FABP, the key regulators in the PPAR, and the downregulation of FATP and FABP exerts further effects on the expression of SCD-1, ACBP, LPL, SCP-X, and ACO, which leads to the disorder of PPAR signaling pathway and the fatty acid degradation pathway. Not only that, PDS treatment leads to enzyme activity decrease by inhibiting the expression of genes associated with catalytic activity, such as cytochrome P450 and other similar genes.

The anti-platelet activity of panaxadiol fraction and panaxatriol fraction of Korean Red Ginseng in vitro and ex vivo

  • Yuan Yee Lee;Yein Oh;Min-Soo Seo;Min-Goo Seo;Jee Eun Han;Kyoo-Tae Kim;Jin-Kyu Park;Sung Dae Kim;Sang-Joon Park;Dongmi Kwak;Man Hee Rhee
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.638-644
    • /
    • 2023
  • Background: The anti-platelet activity of the saponin fraction of Korean Red Ginseng has been widely studied. The saponin fraction consists of the panaxadiol fraction (PDF) and panaxatriol fraction (PTF); however, their anti-platelet activity is yet to be compared. Our study aimed to investigate the potency of anti-platelet activity of PDF and PTF and to elucidate how well they retain their anti-platelet activity via different administration routes. Methods: For ex vivo studies, Sprague-Dawley rats were orally administered 250 mg/kg PDF and PTF for 7 consecutive days before blood collection via cardiac puncture. Platelet aggregation was conducted after isolation of the washed platelets. For in vitro studies, washed platelets were obtained from Sprague-Dawley rats. Collagen and adenosine diphosphate (ADP) were used to induce platelet aggregation. Collagen was used as an agonist for assaying adenosine triphosphate release, thromboxane B2, serotonin, cyclic adenosine monophosphate, and cyclic guanosine monophosphate (cGMP) release. Results: When treated ex vivo, PDF not only inhibited ADP and collagen-induced platelet aggregation, but also upregulated cGMP levels and reduced platelet adhesion to fibronectin. Furthermore, it also inhibited Akt phosphorylation induced by collagen treatment. Panaxadiol fraction did not exert any antiplatelet activity in vitro, whereas PTF exhibited potent anti-platelet activity, inhibiting ADP, collagen, and thrombin-induced platelet aggregation, but significantly elevated levels of cGMP. Conclusion: Our study showed that in vitro and ex vivo PDF and PTF treatments exhibited different potency levels, indicating possible metabolic conversions of ginsenosides, which altered the content of ginsenosides capable of preventing platelet aggregation.

Studies on Secretion of Catecholamines evoked by Panaxadiol in the Isolated Rabbit Adrenal Gland (파낙사디올의 가토적출부신의 카테콜아민 분비작용에 관한 연구)

  • Lim, Dong-Yoon;Park, Kyu-Baik;Kim, Kyu-Hyeong;Choi, Cheol-Hee;Bae, Jae-Woong;Kim, Moo-Won
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.31-42
    • /
    • 1988
  • The effect of Panaxadiol(PD), which is an active component of Korean Ginseng Saponins, on the secretion of catecholamines (CA) from the rabbit adrenal gland and its mode of action were investigated in the present study. $PD(400{\mu}g)$ increased significantly the secretion of CA from the isolated perfused rabbit adrenal gland. PD-induced secretion of CA was reduced markedly by treatment of atropine, CA secretion induced by Ach or PD was potentiated significantly by physostigmine-treatment. Chlorisondamine did inhibit CA secretion of PD or Ach. Perfusion of $PD(400{\mu}g)$ for 30 min enhanced the secretory activity of CA by Ach. Ouabain weakened the secretory response induced by PD but rather enhanced the response by Ach. Adenosine-treatment resulted in marked enhancement of CA secretion by PD or Ach, Pefusion with $Ca^{2+}-free$ Krebs containing EGTA (5 mM) for about 30 min totally blocked secretory effect induced by Ach and also weakened that by PD. From the above experimental results, it is suggested that PD causes secretion of catecholamines from the rabbit adrenal gland by a calcium-dependent exocytotic mechanism. The secretory effect of PD is due to the stimulation of cholinergic muscarinic and nicotinic receptors present in the adrenal gland and partly to a direct action on the chromaffin cell itself.

  • PDF

Biosynthesis of Saponins in Panax ginseng (고려인삼 사포닌류의 생합성에 관한 연구)

  • Hong, Seok-Ju;Lee, Yong-U;Ju, Chung-No
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.136-144
    • /
    • 1987
  • Biosynthesis of saponins from acetate, mevalonate and squalene using root slices of panax ginseng C.A. Meyer was investigated. The sliced roots (2g) were incubated with the reaction mixture containing 20 M sodium acetate ($500\mu$Ci [U-$^{l4}C$]-acetate),10 mM mevalonate ($25\mu$Ci [2-$^{l4}C$]-mevalonate) or 10 mM swidme ($10\mu$Ci [4,8,12,13,17,21-$^3H$]-squalene) respectively at $30^{\circ}C$ for 72 hours. Biosynthesis of labelled ginseng saponine from [U-l4C]-acetate, [2-$^{l4}C$]-mevalonate and [4,8,12,13,17,21-$^3H$]-squalene was confirmed by autoradiography. Analysis of the products from [U-$^{l4}C$]-acetate by T.L.C. showed that the % radioactivities in panaxadiol, panaxatriol, squalene and mevalonate were found to be 2.1%, 2.7%, 2.6% and 0.2% respectively. Some of the sugars were also highly labelled. Analysis of the products from [2-$^{l4}C$]-mevalonate by T.L.C. showed that squalene was highly labelled and the products from [4,8,12,13,17,21-$^3H$]-squalene showed that panaxadiol, panaxatriol and sterol were highly labelled. From the above results, it was suggested that saponine might be synthesized from acetate via mevalonate-squalene route as expected in ginseng root.

  • PDF

Effects of Red Ginseng Component Administration on Glutathione and Lipid Peroxidation Levels in Mice Liver (홍삼 활성 성분이 생쥐 간 조직에서 Glutathione 및 지질과산화에 미치는 항산화 효과)

  • Sung, Kum-Soo;Chun, Chul;Kwon, Yong-Hun;Chang, Che-Chul
    • Journal of Ginseng Research
    • /
    • v.24 no.4
    • /
    • pp.176-182
    • /
    • 2000
  • The effects of red ginseng component (water extracts, alcohol extracts, lipophilic extracts, total saponins, panaxadiol and panaxatriol) administration on glutathione (GSH) and lipid peroxidation levels in mice were investigated. 20~25 g ICR mice which were pretreated with water extracts (50 mg/kg), alcohol extracts (50 mg/kg), lipophilic extracts (50 mg/kg), total saponins (50 mg/kg), panaxadiol (50 mg/kg) and panaxatriol (50 mg/kg) for 15 days. The ability of red ginseng component to protect against oxidative damage to the mouse liver was examined by determining the level of lipid peroxidation (MDA), glutathione, and the activities of glutathione peroxidase (GPX). The GSH level was raised by all the ginseng component, but the GSSG level was lowered ]argely by all the ginseng component. The ratio of GSSG/total GSH was decreased because the level of GSSG was decreased more than that of GSH. Finally, the lipid peroxidation (MDA) level was the lowest in lipophilic extracts and panaxadiol nest. In conclusion, the order of effectiveness of anti-oxidants was to be lipophilic extracts>panaxadiol>total saponins.

  • PDF

Studies on the Ginseng Plants(I) -Saponins and Sapogenins from American Ginseng Plants- (인삼식물(人蔘植物)에 관(關)한 연구(硏究)(I) -미국인삼(美國人蔘) 사포닌 및 그 비당체(非糖體)-)

  • Kim, Jung-Yun;Staba, E. John
    • Korean Journal of Pharmacognosy
    • /
    • v.4 no.4
    • /
    • pp.193-203
    • /
    • 1973
  • The saponins of two- and four-year-old American ginseng plants (Panax quinquefolium L.) (Araliaceae) collected in July and September were studied. American ginseng saponins (panaquilins) differ from Korean ginseng $(Panax ginseng\;C.A.\;M_{EYER})$ saponins (ginsenosides). The American ginseng saponins separated and named were panaquilins A, B, C, D, E-1, E-2, E-3, G-1, G-2, (c) and (d). One-dimensional thin-layer chromatography did not completely separate panaquilin mixture and was subject to misinterpretation. The panaquilins were more accurately separated and identified by the two-dimensional thin-layer method established. Some differences in American ginseng saponins were dependent upon the plant age, time of collection, and part extracted. The American ginseng sapogenin components are panaxadiol (panaquilins B and C), oleanolic acid (panaquilin D) and panaxatriol (panaquilin G-1). The panaquilins E-1, E-2 and E-3 mixture contained both panaxadiol and panaxatriol. The genins of panaquilins A, (c), (d) and G-2 were not identified. In addition, ${\beta}-sitosterol$ and stigmasterol were identified from the root ether extracts.

  • PDF

Influences of Fusurium sozani and Phytophthoya cactorum on the Changes in Saponin Components of Korean Ginseng (Panax ginseng C.A. Meyer) (Fusarium solani와 Phytophlhora cactorum이 고려인삼의 사포닌 성분변화에 미치는 영향)

  • 조대휘;오승환
    • Journal of Ginseng Research
    • /
    • v.10 no.1
    • /
    • pp.66-75
    • /
    • 1986
  • Influnces of Fuiarium solani and Phytophthora cactorum infection on the changes in saponin components of Korean ginseng (Panax ginseng C.A. Meyer)roots and some of the biology of those fungi in relation to ginseng root were investigated. Mycelial growth of F. solani was decreased as increasing concentration of the water extracts of fresh ginseng roots, while that of P. cactorum was increased as increasing the concentration of the water extracts and crude saponin. Mycelial growth of F. solani, however, was increased as increasing concentration of crude ginseng saponin upto 20 ppm, while it was tended to be decreased when the concentration was higher than 50 ppm. Nystatin also suppresed the growth of F. solani as increasing its concentration, but it did not affected on the growth of p. cactorum. Ginsenoside Ra and Ro components were not detected in ginseng roots inoculated with F. solani or P. cactorum. Panaxadiol gisenosides were increased by 3.0%, whereas panaxatriol ginsenosides were decreased by 34.9% in ginseng roots inoculated with F. iolani. In ginseng roots inoculated with P. cactorum panaxadiol ginsenosides were increased by 21.1%, but panaxatriol ginsenosides were decreased by 23.5%. PD/PT ratio in ginseng roots inoculated with F. solani or P. cactorum were equally increased by 58.4% in spite of differences in the change of panaxadiol and panaxatriol ginsenosides. The total saponin components of ginseng roots inoculated with F. solani or P. cactorum were decreased by 17.8% and 2.5%, respectively.

  • PDF