• 제목/요약/키워드: Panax species

검색결과 220건 처리시간 0.022초

왜생삼 (Panax trifolius L.)의 사포닌과 프라보노이드의 화학적 연구 및 오가과에 속하는 유연종과의 성분 비교연구 (A Chemical Study of the Saponins and Flavonoids of Dwarf Ginseng (Panax trifolius L.) and Its Comparison to Related Species in the Araliaceae)

  • Lee Taikwang M.;Marderosian Ara Der
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1988년도 학술대회지
    • /
    • pp.141-146
    • /
    • 1988
  • 북미가 원산지인 왜생삼(Panax trifolius L.)은 인삼속(오가과)에 속하며 카나다 남부에서 북미에 걸쳐 서식한다. 왜생삼 잎에서 4종류의 프라보느이드와 5종류의 진세노사이드로 확인된 총 9종류의 화합물을 분리하였다. 2종류의 진세노사이드로 확인된 총 9종류의 화합물을 분리하였다. 2종류의 프라보노이드는 kaempferol-3,7-dirhamnoside와 kaempferol-3-gluco-7rhamnoside로 각각 확인되었다. 4종류의 진세노사이드는 각각 notoginsenoside-Fe, ginsenoside-Rd, ginsenoside-Rc와 ginsenoside-$Rb_3$로 확인되었으며, 이들 왜생삼의 ginsenoside 공통된 골격구조는 (20S)-protopanaxadiol인 것으로 밝혀졌다. 프라보노이드와 진세노사드의 동정은 왜생삼의 뿌리, 줄기, 잎, 꽃과 열매에서 추출하여 2차원 박층 그로마토그라피(2D-TLC)와 고압 액체크로마토그라피(HPLC)로 하였다. 왜생삼과 근연종인 고려인삼(Panax ginseng C.A. Meyer)및 미국삼(Panx quinquefolium L.)의 뿌리, 줄기, 잎, 꽃과 열매에서 추출한 프라보노이드와 진세노시드의 정량은 고압 액체크로마토그래피 만을 사용하여 분석하였다. 화합물 1,3과 4로 명명한 kaempferol 유도체인 프라보노이드 3가지는 왜생삼의 뿌리에 $10.8\%,\;2.8\%$$8.4\%$가 각기 함유되어 있었으나 고려인삼과 미국삼에서는 함유되어 있지 않았다. 오가과 인삼속식물 뿌리에서 프라보노이드가 확인, 동정된 것은 이것이 처음이다.

  • PDF

Comparison of Seed Oil Characteristics from Korean Ginseng, Chinese Ginseng (Panax ginseng C.A. Meyer) and American Ginseng (Panax quinquefolium L.)

  • Zhu, Xue-Mei;Hu, Jiang-Ning;Shin, Jung-Ah;Lee, Jeung-Hee;Hong, Soon-Teak;Lee, Ki-Teak
    • Preventive Nutrition and Food Science
    • /
    • 제15권4호
    • /
    • pp.275-281
    • /
    • 2010
  • The chemical characteristics of seed oils of Asian ginseng (Panax ginseng C.A. Meyer) at different ages grown in Korea (3, 4 and 5-year old) and China (5-year old), and American ginseng (Panax quinquefoliu L., 5-year old) grown in China were compared. Total fatty acid composition showed a significantly higher oleic acid content in American (87.50%) than in Korean (68.02~69.14%) and Chinese ginseng seed oils (61.19%). At the sn-2 position, the highest oleic acid (81.09%) and lowest linoleic acid (15.77%) were found in American ginseng seed oil. The main triacylglycerol species in ginseng seed oils were triolein (OOO) and 1,2-dioleoyl-3-linoleoyl-glycerol (LOO)/1,3-dioleoyl-2-linoleoyl-glycerol (OLO). In addition, the seed oils possessed an ideal oxidative stability showing 16.55~23.12 hr of induction time by Rancimat test. The results revealed that ginseng seed oil could be developed as a new healthy edible oil, and that the oil's chemical characteristics were strongly associated with the ginseng species and habitats.

A Role for Ginseng in the Control of Postprandial Glycemia and Type 2 Diabetes

  • Vuksan Vladimir;Sievenpiper John L;Xu Zheng;Zdravkovic Uljana Beljan;Jenkins Alexandra L;Arnason John T;Bateman Ryon M.;Leiter Lawrence A;Josse Robert G;Francis Thomas;Stavro Mark P
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.1-19
    • /
    • 2002
  • The use of herbals has increased considerably while their efficacy and safety remain untested. This unsupported surge in demand has prompted a call for their clinical evaluation. One area in which evaluations are emerging is ginseng and diabetes. Growing evidence is accumulating from in vitro and animal models indicating that various ginseng species, American (Panax quinquefolius L), Asian (Panax ginseng C.A. Meyer), Korean Red, San-chi (Panax notoginseng [Burk.] P.R. Chen), and the non-panax species Siberian (Eleutherococcus senticossus) ginsing, and their fractions, saponins (ginsenosides) and peptidoglycans (panaxans for panax species and eleutehrans for Siberian ginseng), might affect carbohydrate metabolism and related signaling molecules. Recent human studies from our laboratory have also shown a blood glucose lowering effect of American ginseng (AG) and some other ginseng spices postprandially after acute administration and chronically after administration for 8-weeks in people with type 2 diabetes. Although generally encouraging, these data only indicate a need for more evaluations of ginsengs safety and efficacy. Because of poor industry standardization, it is not known whether all ginsengs will affect blood glucose. In this regards some ginseng batches have demonstrated null effects while others have even raised postprandial glycemia. Clinical research should therefore focus on components involved in its glucose lowering effects.

  • PDF

Taxonomy of fungal complex causing red-skin root of Panax ginseng in China

  • Lu, Xiao H.;Zhang, Xi M.;Jiao, Xiao L.;Hao, Jianjun J.;Zhang, Xue S.;Luo, Yi;Gao, Wei W.
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.506-518
    • /
    • 2020
  • Background: Red-skin root of Asian ginseng (Panax ginseng) significantly reduces the quality and limits the production of ginseng in China. The disease has long been thought to be a noninfectious physiological disease, except one report that proved it was an infectious disease. However, the causal agents have not been successfully determined. In the present study, we were to reveal the pathogens that cause red-skin disease. Methods: Ginseng roots with red-skin root symptoms were collected from commercial fields in Northeast China. Fungi were isolated from the lesion and identified based on morphological characters along with multilocus sequence analyses on internal transcription spacer, β-tubulin (tub2), histone H3 (his3), and translation elongation factor 1α (tef-1α). Pathogens were confirmed by inoculating the isolates in ginseng roots. Results: A total of 230 isolates were obtained from 209 disease samples. These isolates were classified into 12 species, including Dactylonectria sp., D. hordeicola, Fusarium acuminatum, F. avenaceum, F. solani, F. torulosum, Ilyonectria mors-panacis, I. robusta, Rhexocercosporidium panacis, and three novel species I. changbaiensis, I. communis, and I. qitaiheensis. Among them, I. communis, I. robusta, and F. solani had the highest isolation frequencies, being 36.1%, 20.9%, and 23.9%, respectively. All these species isolated were pathogenic to ginseng roots and caused red-skin root disease under appropriate condition. Conclusion: Fungal complex is the causal agent of red-skin root in P. ginseng.

Type-specific Amplification of 5S rRNA from Panax ginseng Cultivars Using Touchdown (TD) PCR and Direct Sequencing

  • Sun, Hun;Wang, Hong-Tao;Kwon, Woo-Saeng;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제33권1호
    • /
    • pp.55-58
    • /
    • 2009
  • Generally, the direct sequencing through PCR is faster, easier, cheaper, and more practical than clone sequencing. Frequently, standard PCR amplification is usually interpreted by mispriming internal or external regions of the target template. Normally, DNA fragments were eluted from the gel using Gel extraction kit and subjected to direct sequencing or cloning sequencing. Cloning sequencing has often troublesome and needs more time to analyze for many samples. Since touchdown (TD) PCR can generate sufficient and highly specific amplification, it reduces unwanted amplicon generation. Accordingly, TD PCR is a good method for direct sequencing due to amplifying wanted fragment. In plants the 5S-rRNA gene is separated by simple spacers. The 5S-rRNA gene sequence is very well-conserved between plant species while the spacer is species-specific. Therefore, the sequence has been used for phylogenetic studies and species identification. But frequent occurrences of spurious bands caused by complex genomes are encountered in the product spectrum of standard PCR amplification. In conclusion, the TD PCR method can be applied easily to amplify main 5S-rRNA and direct sequencing of panax ginseng cultivars.

인삼엽요병에서 Active Oxygen Species (^1O_2, O_2^-, H_2O_2$)가 Chlorophyll Bleaching에 미치는 영향 및 방제대책에 관한 연구 (Effects Of Active Okygen Species (^1O_2, O_2^-, H_2O_2$) and Scavengers on the Chlorophyll Bleaching of Leaf-Burning Disease from Panax ginseng C.A. Meyer)

  • 양덕조;김명원;채쾌;김명식
    • Journal of Ginseng Research
    • /
    • 제13권1호
    • /
    • pp.98-104
    • /
    • 1989
  • In order to determine the specific active oxygen species directly related to chlorophyll bleaching in the leaf-burning disease, we investigated the effects of singlet oxygen (1O2), superoxide radical (O2-), and hydrogen Peroxide (H2O2) on isolated chloroplast suspension and leaf discs from Panax ginseng C.A. Meyer. When the singlet oxygen was added to the chloroplast suspension, the chlorophyll and carotenoid contents were decreased by more than 809), similar to treatment with high light intensity (100 KLux). We assumed that the conversion of dioxygen (O2) produced either in photolysis or in breakdown of hydrogen peroxide to singlet oxygen resulted from photorespiration. On the basis of these experiments , :he inhibitory effects of active oxygen scavengers propylgallic acid (PGA), 2,5-ditetrabutyl hydroquinon (DBH), sodium pyrosulfate (SPS), and ascorbic acid (ABS) were examined. In chloroplast suspension all four scavengers inhibited chlorophyll bleaching by more than 75fl , and in the leaf discs the inhibition rates of SPS, PGA and ABS were 46%, 51%, and 96% respectively.

  • PDF

Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

  • Mathiyalagan, Ramya;Subramaniyam, Sathiyamoorthy;Natarajan, Sathishkumar;Kim, Yeon Ju;Sun, Myung Suk;Kim, Se Young;Kim, Yu-Jin;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • 제37권2호
    • /
    • pp.227-247
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.

Pathogenesis strategies and regulation of ginsenosides by two species of Ilyonectria in Panax ginseng: power of speciation

  • Farh, Mohamed El-Agamy;Kim, Yu-Jin;Abbai, Ragavendran;Singh, Priyanka;Jung, Ki-Hong;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.332-340
    • /
    • 2020
  • Background: The valuable medicinal plant Panax ginseng has high pharmaceutical efficacy because it produces ginsenosides. However, its yields decline because of a root-rot disease caused by Ilyonectria mors-panacis. Because species within Ilyonectria showed variable aggressiveness by altering ginsenoside concentrations in inoculated plants, we investigated how such infections might regulate the biosynthesis of ginsenosides and their related signaling molecules. Methods: Two-year-old ginseng seedlings were treated with I. mors-panacis and I. robusta. Roots from infected and pathogen-free plants were harvested at 4 and 16 days after inoculation. We then examined levels or/and expression of genes of ginsenosides, salicylic acid (SA), jasmonic acid (JA), and reactive oxygen species (ROS). We also checked the susceptibility of those pathogens to ROS. Results: Ginsenoside biosynthesis was significantly suppressed and increased in response to infection by I. mors-panacis and I. robusta, respectively. Regulation of JA was significantly higher in I. robusta-infected roots, while levels of SA and ROS were significantly higher in I. mors-panacis-infected roots. Catalase activity was significantly higher in I. robusta-infected roots followed in order by mock roots and those infected by I. mors-panacis. Moreover, I. mors-panacis was resistant to ROS compared with I. robusta. Conclusion: Infection by the weakly aggressive I. robusta led to the upregulation of ginsenoside production and biosynthesis, probably because only a low level of ROS was induced. In contrast, the more aggressive I. mors-panacis suppressed ginsenoside biosynthesis, probably because of higher ROS levels and subsequent induction of programmed cell death pathways. Furthermore, I. mors-panacis may have increased its virulence by resisting the cytotoxicity of ROS.

인삼지용성성분의 지질과산화 및 산화적 DNA손상에 대한 억제효과 (Protective effect of Ginseng Petroleum Ether Extract Against Lipid Peroxidation and Oxidative DNA Damage)

  • 허문영
    • 한국식품위생안전성학회지
    • /
    • 제12권4호
    • /
    • pp.315-320
    • /
    • 1997
  • Panax ginseng C.A. Meyer has been extensively used in the traditional oriental medicine as a restorative, tonic and prophylatic agent. This study was devised to develop a chemopreventive agent from panax ginseng to be able to suppress the genotoxicity and oxidative damage by ractive oxygen species, which are involved with cancer or aging. Ginseng petroleum ether extract (GPE) and one of its fraction, P2, showed an antioxidative effect on the lipid peroxidiphenyl-2-picryl hydrazil (DppH) radical generation. They also showed the suppressive effect of H2O2 or KO2 induced DNA damage by single cell gel electrophoresis (SCGE). Results from our study indicate that GPE and P2 are capable of protecting lipid peroxidation, and oxidative DNA damage. Therefore, GPE and P2 may be useful chempreventive agents which are involved with cancer and aging.

  • PDF

Quantitative Analysis of Dammarane-type Ginsenosides in Different Ginseng Products

  • Lee, Dong Gu;Quilantang, Norman G.;Lee, Ju Sung;Geraldino, Paul John L.;Kim, Hyun Young;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • 제24권4호
    • /
    • pp.229-234
    • /
    • 2018
  • Ginseng products available in different forms and preparations are reported to have varied bioactivities and chemical compositions. In our previous study, four new dammarane-type ginsenosides were isolated from Panax ginseng, which are ginsenoside Rg18 (1), 6-acetyl ginsenoside Rg3 (2), ginsenoside Rs11 (3), and ginsenoside Re7 (4). Accordingly, the goal of this study was to determine the distribution and content of these newly characterized ginsenosides in different ginseng products. The content of compounds 1 - 4 in different ginseng products was determined via HPLC-UV. The samples included ginseng roots from different ginseng species, roots harvested from different localities in Korea, and samples harvested at different cultivation ages and processed under different manufacturing methods. The four ginsenosides were present at varying concentrations in the different ginseng samples examined. The variations in their content could be attributed to species variation, and differences in cultivation conditions and manufacturing methods. The total concentration of compounds 1 - 4 were highest in ginseng obtained from Geumsan ($185{\mu}g/g$), white-6 yr ginseng ($150{\mu}g/g$), and P. quinquefolius ($186{\mu}g/g$). The results of this study provide a basis for the optimization of cultivation conditions and manufacturing methods to maximize the yield of the four new ginsenosides in ginseng.