• Title/Summary/Keyword: Panax leaves

Search Result 195, Processing Time 0.028 seconds

Effect of Processing Methods on the Saponin Contents of Panax ginseng Leaf-Tea (고려인삼엽차의 제조방법에 따른 사포닌 성분의 함량 및 조성)

  • 장현기
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.1
    • /
    • pp.46-53
    • /
    • 2003
  • Panax ginseng leaf tea was developed for the functional benefit of health, preference and convenience. The leaves of 4-year-old ginseng were selected in July and August. The ginseng leaf was treated by three methods : heat processed tea(HPT), aged tea(AGT) and hot-air dried tea(DRT). The contents and compositions of their crude saponin of ginseng leaves were measured. 1. The content of crude saponin of HPT was the higher than other treatments. The content of HPT was 18.72∼18.82%, ACT 18.24∼18.29% and DRT 17.02∼17.17%. 2. The harvest time and treatment methods were not affect the composition of ginsenoside in ginseng leaf tea. The ginsenoside-Re was shown the highest value as 1.97∼2.15. And ginsenoside-Rd was 1.48∼1.79, -Rg$_1$ 1.33∼1.58 and -Rb, -Rb$_2$, -Rc in the order. 3. The content of protopanaxadiol(PD) and protopanaxatriol(PT) was shown that DRT was 1.11∼1.13, HPT 1.09~l.12 and AGT 0.92∼1.02. The content of PD and PT were shown similar result at any harvest time. 4. The contents of crude saponin extracted by hot-water at 5 min was the higher ratios in HPT and harvested in July than other treatments. The content of crude saponin of ginseng leaf harvested in July was 15.88% and HPT was 16.88%. The order of contents of ginsenoside were -Re, -Rd, -Rg$_1$, -Rb$_1$, -Rb$_2$, and - Rc. The extraction ratio of crude saponin extracted by the circulated extraction method in 8 hours and 5 min extraction were 81.74∼84.38%. And HPT of ginseng leaf harvested in July was the highest value 84.3% but the extraction ratio of ginsenoside was 78.00~88.13%. But the extraction ratio of ginsenoside was similar trend in all treatments.

Effects of Overwintering Disease Prevention in Korean Ginseng(Panax ginseng C.A. Meyer) by an Agronomical Control Measure in Paddy Field (논 재배 인삼의 월동병해 발생경감을 위한 경종적 처리효과)

  • Seong, Bong-Jae;Kim, Sun-Ick;Lee, Ka-Soon;Kim, Hyun-Ho;Kang, Yun Kyu;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.152-158
    • /
    • 2019
  • This study was conducted to develop and prove the effects of an agronomical pest control measure on ginseng cultivated by direct seeding in paddy field, and the results obtained are as follows. Decomposition of ginseng in field during overwintering was due to gray mold rot caused by Botrytis cinerea, which occurred in October or November of 2016 and intensified in February and March the following year. The occurrence rate of gray mold rot based on shading materials was 6.5%, 16.8%, and 29.5% with light-proof paper, PE shade net, and rice straw shade, respectively. The initial infection occurred in the leaves prior to wintering and secondary infection occurred in the stems after wintering. The rate of screrotium formation by gray mold in the above-ground parts of ginseng tended to increase: 26.6% on October 20, 33.7% in November 20, and 41.8% on December 20. The force needed to remove the leaves and stems from withered ginseng was 0.2, 0.94, 2.5, and 5 kg for 1-, 2-, 3-, and 4- and 5-year holds; the force required was 1 kg after wintering, making it relatively easy to remove. The disease incidence rate after the removal of leaves and stems was 2.5%, 1.2%, and 2.2% in 4-, 5-, and 6-year-old plants, respectively, and a disease high incidence rate of 8.8%, 13.0%, and 18.2%, respectively, was seen when the leaves and stems were not removed. In both transplanting and direct seeding, the miss-planted rate decreased and the germination rate increased when shading material was removed and the surface of ridge was covered with soil or vinyl.

Analysis for the Major Traits and Genetic Similarity of Native Ginseng (Panax Ginseng C.A. Meyer) Collections in Korea. (인삼(Panax ginsneg C.A. Meyer) 수집종의 주요 특성 및 유연관계 분석)

  • Rhim, Soon-Young;Sohn, Jae-Keun;Ryu, Tae-Seok;Kwon, Tae-Ryong;Choi, Jin-Kook;Choi, Hong-Jib
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.488-494
    • /
    • 2010
  • In this study, the major agronomic traits were investigated and RAPD technique was applied for the analysis of the genetic relations between the native ginsengs collected from Poonggi and Geumsan provinces in Korea. The main morphological traits were measured for a total of 54 collections of native ginseng from two areas based on UPOV standard. A total of 58 collections consisting of twenty-one native ginsengs collections from Poonggi area, twenty-nine collections from Geumsan area and four varieties of P. quinquefolium, P. japonicum, Chunpoong and Hwangsuk as controls were analyzed and clustered by RAPD. The results indicated that 01-9, 01-35 and 01-44 collections from Poonggi area were grouped into Geumsan area, while 332001, 332002 and 332003 collections from Geumsan area were grouped into Poonggi area. On comparison to the similarity of Poonggi collections (73-95%), the Geumsan collections showed 65-86% similarity in the population. Thus, the cluster should be applied according to the number of stem, number of leaves per stem and leaflet shape on the regionally native ginseng collections. The fourteen primers such as OPA02, OPA07, OPC08, OPD11, OPD20 and so on, will be used to select the native ginseng in the future studies.

Studies on the Photosynthesis of Korean Ginseng 1. Seasonal Changes in Photosynthetic Ability of Youngaged Korean Ginseng (Panax ginseng C. A. Meyer) (고려인삼엽의 광합성능력에 관한 연구 -제 1 보 저년생 고려인삼 광합성능력의 계절적 변이-)

  • 조재성;원준연
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.1
    • /
    • pp.89-97
    • /
    • 1984
  • This study was carried out to investigate the effect of seasonal changes on some of the morphological and physiological characteristics, including the photosynthetic abilities and dark respiration, of young ginseng plants due to planting location under shading. The results obtained are as follows: 1. Seedlings and 2-year old plants planted in the back rows appeared to have broader leaf area, and their leaf weight greatly increased in September. Chlorophyll content was significantly reduced in September rather than in June and the plants in the back rows had more chlorophyll content than those in the front rows. 2. There was no difference in the light compensation point between the front and back rows in June, while in September the light compensation point of 2-year old ginseng leaves was much lower for plants in the back rows compared with those in the front rows. A difference in the light saturation point was not noticeable between plants in the front and back rows in June and September. But the light saturation point of 2-year old ginseng leaves at $15^{\circ}C$ was high in June, while it was high at $20^{\circ}C$ high in September. 3. Maximum photosynthetic ability was attained at $15^{\circ}C$ in June and at $20^{\circ}C$ in September. During June no significant difference in photosynthetic ability was found between plants in the front and back rows, but in September the amount of photosynthesis was significantly increased at the leaves of seedlings as well as 2-year old plants planted in the back rows. 4. The optimum temperature for maximum photosynthesis in 2-year old plants ranged from $14.0^{\circ}C$ to $14.5^{\circ}C$ in June and from $19.5^{\circ}C$ to $20.5^{\circ}C$ in September. However, the optimum temperature for maximum photosynthesis in the seedlings was from $21.2^{\circ}C$ to $21.6^{\circ}C$ in September, but a significant difference in the optimum temperature for the maximum photosynthesis in seedlings and 2-year old plants was not noticeable between the front and back rows. 5. The respiration rate was rather high in seedlings compared with 2-year old plants. During September the respiration rate in seedlings was much lower in the back rows than in the front rows. The rate of increase in the respiration of 2-year old plants was higher at September than June. The increase in respiration rate due to temperature was more significant in seedlings than 2-year old plants. 6. In September, the level of $Q_{10}$ in 2-year old plants was much lower than that found in seedlings. During June, 2-year old plants showed lower $Q_{10}$ levels at a temperature difference between $15^{\circ}C$ and $25^{\circ}C$; but in September this occurred at a temperature difference between $20^{\circ}C$ and $30^{\circ}C$.

  • PDF

Studies on Analysis of Growth Characteristics, Ability of Dry Matter Production, and Yield of Panax ginseng C. A. Meyer at Different Growth Stages with Different Cultivars and Shading Nets in Paddy Field (논토양에서 해가림 유형 및 품종별 인삼의 생육시기에 따른 생육특성, 건물생산 능력 및 수량성 비교)

  • Song, Beom-Heon;Chang, Yoon-Gi;Lee, Kyung-A;Lee, Sung-Woo;Kang, Seung-Won;Cha, Sun-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.2
    • /
    • pp.90-96
    • /
    • 2011
  • This study was conducted to examine major growth responses, the production and partitioning of dry matter on different growth stages, and yields and to select the optimal shading material in both quality and productivity of ginseng. Two cultivars of ginseng, Cheonpoong and Geumpoong, were cultivated in the paddy soil with three different shading materials; three-layered blue and one-layered black polyethylene (TBP), blue polyethylene sheet (BPS), and aluminium-coated polyethylene sheet (APS). Plant heights were linearly increased until June 24 and then maintained with showing higher height in Cheonpoong than that in Geumpoong cultivar. Root lengths were gradually increased until October 16. They were longer in Cheonpoong than that in Geumpoong cultivar, showing slightly longer with APS compared to TBP and BPS. The ability of producing dry matter of leaves was much higher from April to June compared to those of other growth periods, whereas its ability of root was concentrated from the end of June to the end of August. Among the shading materials, the ability of producing dry matter of shoot was higher with TBP than those with BPS and APS, while its ability of root was not appeared certain tendency unlike the shoot. The yield of ginseng roots was the highest with TBP among three shading materials and it was higher in Cheonpoong than that of Geumpoong cultivar. The shading materials which affect the light intensity and the temperature would be considered as an important factor to get better quality and productivity of Korean ginseng.

Intestinal Immune Modulating Polysaccharides of Atractylodes lancea DC. Rhizomes

  • Yu, Kwang-Won
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2000.05a
    • /
    • pp.1-3
    • /
    • 2000
  • A kind of traditional herbal prescription, Sip-Jeon-Dae-Bo-Tang (TJ-48), has been reported to improve the general condition of cancer patients receiving chemotherapy and /or radiation therapy, and to accelerate hematopoietic recovery from bone marrow injury by mitomycin C. In the present studies, we found that hot-water extract from Atractylodes lancea DC. rhizomes contributed mainly to intestinal immune modulating activity of TJ-48 on Peyer's patch cells mediated-hematopoietic response. After the fractionation, ALR-5 II a-1-1, 5 II b-2-2 and 5 II c-3-1 were further purified from crude polysaccharide fraction. Chemical analyses of each fraction indicated that ALR-5 II a-1-1 mainly contained arabinogalactan fraction whereas ALR-5 II b-2-2 and 5 II c-3-1 mostly comprised pectic polysaccharide fractions as the active polysaccharide ingredients. In order to analyze the essential structure of the activity, ALR-5 II a-1-1 was treated by sequential enzymatic digestion using exo-${\alpha}$-L-arabinofuranosidase and exo-${\beta}$-D-(1\longrightarrow3)-galactanase. Based upon the results of chemical and MALDI-TOF-MS analyses and activity on the digested fractions, the galactosyl side chains consisting of 6-linked Galf and Galp over tetrasaccharide in ALR-5 II a-1-1 might be responsible for the potent intestinal immune modulating activity. To characterize moiety of ALR-5 II c-3-1 for the expression of activity, endo-${\alpha}$-D-(1\longrightarrow4)-polygal acturonase (GL-PGase) purified from dried leaves of Panax ginseng digested ALR-5 II c-3-1. The results of structural analyses and activity on the digested fractions showed that PG-2, which structurally resembles to rhamnogalacturonan II (RG II), and PG-3 (galacturono-oligosaccharides) contained potent intestinal immune modulating activity. Further purification of the other acidic fraction (ALR-5 II b-2-2) indicated that ALR-5 II b-2-2Bb showed that the most potent activity. ALR-5 II b-2-2Bb also contained the unusual component sugars characteristics in RG- II as well as PG-2 derived from ALR-5 II c-3-1, but it could not be digested with GL-PGase. The present studies of relationship between structures and intestinal immune modulating activity of the active polysaccharides purified from A. lancea DC. rhizomes suggested that neutral galactosyl chains consisting mainly of (1\longrightarrow6)-linked Galf and Galp, and RG- II -like moiety with unique component sugars, such as 2-Me-Xyl, 2-Me-Fuc, Api, AceA, Kdo and Dha should play an important role in the potent intestinal immune modulating action of A. lancea DC. rhizomes.

  • PDF

Effect of Furrow Irrigation on the Growth and Quality of Panax Ginseng Plant in a Loam (고랑관수에 의한 수분공급이 인삼의 생육에 미치는 영향)

  • Park, Chol-Soo;Kang, Je-Yong;Lee, Dong-Yun;Ahn, Dae-Jin
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.279-282
    • /
    • 2008
  • This study was conducted to compare the aerial parts growth, yield of fresh ginseng roots, quality of red ginseng roots, and photosynthesis (Fv/Fm, PSII) in leaves between non-irrigation plot and furrow irrigation plot during the ginseng growing seasons. The aerial part growth in furrow irrigation plot was higher than non-irrigation plot in all including the emergency rate, leafing rate and relatively growth rate. Root yield per 10a in irrigation plot was increased about 50% as compared with that of non-irrigation, also heaven and earth grade of red ginseng roots yield in irrigation plot was higher (40.3%) compared with that (30.6%) of non-irrigation plot in 6-years-old ginseng plant. Furrow irrigation markedly improved the ginseng quality and yield in comparison to non irrigation condition. Therefore it needs to control the soil moisture during the growing season for high yield and good qualities of ginseng roots.

Comparative Analysis on Major Growth Responses and Characteristics of Shoot and Root of Panax ginseng C. A. Meyer with Six Different Years Old (인삼의 연생별 지상부와 지하부의 주요 생장반응과 특성에 관한 비교분석)

  • Park, Seong Yong;Lee, Gyeong A;Chang, Yoon Kee;Kim, Do Hyun;Kim, Min Su;Heo, Su Jeong;Jeong, Haet Nim;Park, Kee Choon;Cha, Seon Woo;Song, Beom Heon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.4
    • /
    • pp.296-300
    • /
    • 2013
  • This study was carried out to have the basic and applied information to develop the cultivation methods and models and to increase the productivity of high-quality ginseng. Plant height was dramatically increased from one year old to four years old, and then it was grown up very slowly. Stem length was shown similar tendency as the plant height did. Its range were from 9.4 cm in one year old to about 42.4 cm in four year-old ginseng. The leaf area was clearly increased until four years old, $10.1cm^2$ in one year old to $204.9cm^2$ in four years old, while it was slightly increased after four years old. Root length was continuously increased from one year old until four years old, and then it was grown up very slowly. Tap root length which was measured was appeared about 8 cm from three years old to six years old, showing not much different among the year-olds. The root diameter was continuously increased from one year old to six year-old ginseng, about 2.9 mm and about 19 mm, respectively. The moisture content was higher on the shoot than that on the root. It was slightly decreased as they were getting old. In shoot part, the rate of leaves and stems based on dry weight was about 1 : 1. In the root, the dry weight of tap root was heavier than that of lateral root. The dry weight of shoot was decreased after four years old, while it of the root was continuously increased until six years old, resulting the production of ginseng root. Based on the results of this study, growth characteristics of shoot and root of ginseng were dramatically increased from one year old to four years old and then their growths were appeared different between shoot and root, showing not much growing in shoot and keep growing in root.

Effect of Elevated CO2 Concentration and Temperature on the Growth and Ecophysiological Responses of Ginseng (Panax ginseng C. A. Meyer) (CO2농도와 온도증가에 따른 인삼의 생육 및 생리.생태학적 반응 연구)

  • Lee, Kyoung-Mi;Kim, Hae-Ran;Lim, Hoon;You, Young-Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • In order to understand the growth and ecophy -siological response of ginseng to global warming condition, we cultivated one and two year ginseng seedlings in control (ambient $CO_2$ + ambient temperature) and global warming treatment (elevated $CO_2$ + elevated temperature) from March 2010 to July 2011. Shoot appearance and initiation of flowering were advanced by 3-4 days in global warming treatment than in control. However, timing of fruit setting and seed ripeness was similar in both control and global warming treatment. Shoot length was longer in global warming treatment than in control, and also the number of leaves was much in global warming treatment. Fresh root weight was not different between control and global warming treatment. Photosynthetic rate was higher in global warming treatment than at control. Photosynthetic rate and transpiration rate were higher in two year seedlings than in one year seedlings at control, but was not different between seedling age of ginseng in global warming treatment. Water use efficiency was higher in one year seedlings than two year seedlings at control and global warming treatment. These results demonstrated that Korean ginseng more or less positively responds to global warming situation.

Effect of Soluble-silicate or Chitosan Foliar Spray on Ginseng Cultivated in Blue-white Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Jang, In Bae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.46-46
    • /
    • 2019
  • The experiments were performed in the Jinan (elevation: 300 meters above sea level), Jeollabuk-do. Seedlings (n = 63 per $3.3m^2$) of ginseng cultivar (Cheonpung, Yeonpung) were planted on April 10, 2015. Shading material of plastic film house was blue-white film. Before the Planting seedling, silicate (3 kg/10 a) or chitosan (40 kg/10 a) was fertilized and foliar sprayed on the leaves 1000 times dilution solution once a month from May to September every year. The growth results of 5-year old ginseng surveyed in 2018 are as follows. The average air temperature in the plastic film house was the highest at $26.6^{\circ}C$ and $26.5^{\circ}C$ in July and August, respectively, and the highest temperature was $40.5^{\circ}C$ in July. The maximum daily temperature of $35^{\circ}C$ or more was 30 days, with the average soil temperature being $24.9^{\circ}C$ in August. The chemical properties of the test soil are as follows. pH was 6.4~6.9 level and EC was 0.35~0.46 dS/m. The organic matter content was 33.5~41.4 g/kg, and available-P content was 251.9~306.8 mg/kg. Exchangeable cations contents, such as K, Ca and Mg were all the appropriate ranges. The soil microbial density surveyed by the dilution plate method was 10~50 times higher than that of control (Non-treatment) and actinomycete density was 3~6 times higher. Pathogens of the genus Fusarium by Metagenome analysis decreased 91.3% and 68.2% respectively in the foliar sprayed of chitosan and soluble-silicate. The light intensity (PAR) in the blue-white film plastic film house gradually increased until July and then decereased, with the average of light intensity in March-October was $120.3umol/m^2/s$. The growth of aerial parts such as plant height and stem length was better than non-sprayed group in silicate or chitosan treatments and Yeonpung cultivar was superior to the Cheonpung cultivar. The SPAD value was higher in Yeonpung cultivar foliar sprayed with soluble-silicate. The growth of underground parts such as root length and taproot length were better in chitosan and soluble-silicate treatment than control, especially in Yeonpung cultivar foliar sprayed with chitosan was good in taproot length and taproot diameter, and fresh weight of root was 60.1 g. Ginsenoside contents were 24.9 mg/g and 22.4 mg/g, in the Cheonpung cultivar foliar sprayed with soluble-silicate or chitosan respectively, 28% and 15% higher than control (19.5 mg/g). The incidence of disease by Alteraria panax and Botrytis cinerea was 3~9% and 4~9%, respectively. High temperature damage rate was 3~5%.

  • PDF