• Title/Summary/Keyword: Panax leaves

Search Result 195, Processing Time 0.031 seconds

Pancreatic Lipase Inhibitors Isolated from the Leaves of Cultivated Mountain Ginseng (Panax ginseng) (산양삼 잎으로부터 Pancreatic lipase 저해 활성물질의 분리)

  • Hong, Ju-Yeon;Shin, Seung-Ryeul;Bae, Man-Jong;Bae, Jong-Sup;Lee, In-Chul;Kwon, O-Jun;Jung, Ji-Wook;Kim, Yong-Han;Kim, Tae-Hoon
    • Food Science and Preservation
    • /
    • v.17 no.5
    • /
    • pp.727-732
    • /
    • 2010
  • Activity-guided fractionation of an ethyl acetate (EtOAc)-soluble portion of an ethanolic extract from the leaves of cultivated mountain ginseng, using pancreatic lipase inhibition assay, led to the isolation and identification of three flavonoids of a previously described structure, kaempferol-3-O-sophoroside (I), kaempferol-3-O-${\beta}$-Dglucopyranoside (astragalin, II) and kaempferol (III). All compounds (I.III) showed pancreatic lipase inhibitory activities, with $IC_{50}$ values ranging from $20.3{\pm}2.2$ to $9.1{\pm}1.5$ ${\mu}M$, kaempferol (III) showed the most potent inhibitory activity with an $IC_{50}$ of $9.1{\pm}1.5$ ${\mu}M$. The level of activity may depend on the number of C-3 glucosyl group(s) linked to the kaempferol backbone, and the isolated compounds may have promise as pancreatic lipase inhibitors.

Influence of Boron and Iron Toxicity on the Physiological Status, Growth, and Mineral Uptake of Ginseng in Hydroponic Culture (인삼 수경재배 시 붕소와 철 과잉 농도가 인삼의 생리장해 증상, 생육 및 무기원소 흡수에 미치는 영향)

  • Yu, Jin;Kang, Soo Hyun;Jang, In Bae;Jang, In Bok;Park, Ki Choon;Lee, Ueong Ho;Park, Hong Woo;Suh, Su Jeoung;Seo, Tae Cheol;Kim, Kee Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.3
    • /
    • pp.175-182
    • /
    • 2017
  • Background: Ginseng is a perennial crop grown for more than four years in the same place. Therefore, it is highly affected by the soil environment, especially nutrients in the soil. The present study was carried out to investigate to the influence of boron and iron concentrations on the physiological status, growth, and mineral uptake of ginseng to obtain the basic information for diagnosing a physiological disorder in ginseng plants. Methods and Results: The boron and iron concentrations were controlled at 3, 30, 150, 300 and 2, 20, 100, $200mg/{\ell}$, respectively. When treated with $150mg/{\ell}$ of boron, the ginseng plants showed yellowing or necrosis symptoms at the edge or end of their leaves. Compared with the $3mg/{\ell}$ treatment, the root weight decreased by 13 and 24% in the 150 and $300mg/{\ell}$ treatments, respectively. When treated with $20mg/{\ell}$ of iron, the ginseng plants showed yellowing between the veins of the leaves followed by the formation of brown spots. The root weight gradually decreased with increasing iron concentration. Approximately 55% decrease in root weight was observed upon treatment with $200mg/{\ell}$ of iron. Conclusions: The boron toxicity occurs in the leaves of ginseng at the boron concentration of approximately 1,900 mg/kg or more. The iron toxicity occurs at the iron concentration of approximately 120 mg/kg for leaves and 270 mg/kg for roots.

Characteristics of Photosynthesis among New Cultivars of Ginseng (Panax ginseng C.A. Meyer) (인삼 신품종의 광합성 특성)

  • Lee, Sung-Sik
    • Journal of Ginseng Research
    • /
    • v.26 no.2
    • /
    • pp.85-88
    • /
    • 2002
  • This study was carried out to obtain information of the photosynthetic rate at various temperature and light intensity, stomata, chlorophyll, specific leaf weight, characteristics of aerial part and root in ginseng new cultivars developed by pure line selection. The light saturation point of leaves in new cultivars and Jakyungjong were 15,000 lux, and the optimum air temperature on the photosynthesis of new cultivars and Jakyungjong were 20$\^{C}$. The photosynthetic rates were increased in order of Jakyungjong, Gopoong, Chunpoong and Yunpoong. The dark respiration rate of leaves in ginseng cultivars were increased according to the increasing of temperature, and the dark respiration rate of leaves of Yunpoong was the highest among cultivars. The specific leaf weight (SLW) were increased in order of Jakyungjong, Yunpoong, Gopoong, Chunpoong, but total chlorophyll contents were not different among cultivars. Stomata frequency of Yunpoong was the highest being 69.2ea among cultivars, while the length of stomata was reverse. Yunpoong was superior in aerial part among ginseng cultivars : the number of stem was 1.8ea, the number of palmately leaves was 7.7ea, the number of leaflets was 41.0ea, leaf area was 12.3 dm$^2$ The root weight were increased in order of Jakyungjong, Gopoong, Chunpoong and Yunpoong. Chunpoong and Gopoong hove good root shape the length of tap root in Chunpoong and Gopoong were the longest being 6.5 cm and 6.8 cm respectively, but that in Yunpoong was the shortest being 4.4 cm.

Studies of Seed Germination in Panax ginseng C. A. Meyer III. Seasonal Changes of Germination Inhibitors during Ripening (인삼종자의 발아특성에 관한 연구 III. 등숙과정에 있어서 발아억제물질의 경시적변화)

  • Choe, Gyeong-Gu;Norindo Takahashi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.23 no.1
    • /
    • pp.55-59
    • /
    • 1978
  • This study was carried out to investigate the sea sonal changes of the contents of inhibitors in leaves and fruits of Ginseng plant during ripening. Three kinds of inhibitors in leaves and all parts of fruit, i.e., seed, sarcocarp and endocarp were recognized at the Rf 0.1, 0.4-0.6 and 0.8-1.0 zones by the bioassay of lettuce seed germination. Among them, the level of the inhibitor at the Rf 0.4-0.6 zone in leaf and seed increased most significantly in accordance with fruit ripening. The activities of three inhibitors found in endocarp gradually decreased during ripening.

  • PDF

Growth and Ginsenoside Content in Different Parts of Ginseng Sprouts Depending on Harvest Time (수확시기에 따른 새싹삼의 부위별 생육 및 Ginsenoside 함량 변화)

  • Jang, In Bae;Yu, Jin;Suh, Su Jeoung;Jang, In Bok;Kwon, Ki Beam
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2018
  • Background: Since the revised Ginseng Industrial Act was passed, ginseng sprouts have become a new medicinal vegetable for which there is high consumer demand. However, the existing amount of research and data on ginseng production has not kept pace with this changed reality. Methods and Results: In this study we analyzed the changes in the amounts of ginsenosides in different parts of growing ginseng sprouts during the period from when organic seedlings were planted in nursery soil until 8 weeks of cultivation had elapsed, which was when the leaves hardened. In the leaves, ginsenoside content increased 1.62 times with the panaxadiol (PD) system and 1.31 - 1.56 times with the panaxatriol (PT) system from 7 to 56 days after transplantation. During the same period, the total ginsenoside content of the stems decreased by 0.66 - 0.91 times, and those of the roots increased until the $21^{st}$ day, and then underwent steep declines. The effect of fermented press cake extract (FPCE) and tap water (TP) on the total amount of ginsenoside per plant were similar, and could be represented with the equations $y=1.4330+0.2262x-0.0008x^2$ and $y=0.9555+0.2997x-0.0031x^2$ in which y = ginsenoside content x = amount of and on the total amounts of FPCE or TP, respectively after 26.4 days, however, the difference between ginsenoside content with FPCE and TP widened. Conclusions: These results suggested that the amounts of ginsenosides in different parts of ginseng varied with the cultivation period and nutrient supply. These findings also provide fundamental data on the distribution of ginsenosides among plant parts for 2-year-old ginseng plants in the early-growth stage.

Effects of Nutrient Solution on Growth and Amount of Ginsenoside of Two Year Old Ginseng Grown under Hydroponic Culture (수경재배 양액조건이 2년생 인삼의 생육 및 진세노사이드 함량에 미치는 영향)

  • Yu, Jin;Jang, In Bae;Suh, Soo Jung;Kweon, Ki Bum
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.198-206
    • /
    • 2016
  • Background: Electrical conductivity (EC) and pH are important features of nutrient solution, affecting both growth and quality of crops by altering nutrient uptake. Methods and Results: The pH values of nutrient solutions were controlled at 5.0, 5.5, 6.0, 6.5 and EC values were controlled at 0.68, 0.84, 1.23, 1.41 dS/m. Gingesng root weights were higher during the initial growth period when the plants were treated with low pH and low EC nutrient solutions. However, the higher pH and EC levels, the greater the increase in the rate of root weight between the initial and middle growth periods. The highest ginsenoside amount changed during growth period. The total ginsenoside amount was highest in the root, and the lowest in leaves at 45 and 90 days after treatment, respectively, with solution at a pH of 6.0. After 135 days of treatment, the highest total ginsenoside amount was detected in root treated with soluton with EC values of 1.23 dS/m. Conclusions: For the cultivation of ginseng using a nutriculture system, the pH and EC values of nutrient solutions should to be controlled based on the stage of growth and targeted plant organ (root or leaves).

Effect of Leaf Temperature on Light Response and Respiration in Panax ginseng C. A. Meyer (고려인삼에서 광반응 및 호흡에 미치는 잎온도의 영향)

  • 현동윤;유남희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.725-728
    • /
    • 1996
  • This study was conducted to investigate effect of leaf temperature on light response and respiration during short-term exposure to a sequnce of PPFD cycle(100-200-300-400$\mu$ mol m$^{-2}$ s$^{-1}$ ) under increasing leaf temperature sequnce up to 3$0^{\circ}C$ and in dark condition, increasing up to 46$^{\circ}C$ with step size (1$^{\circ}C$) in Panax ginseng C. A. Meyer. When leaflet exposed to low light intensity and temperature, Rubisco activity was higher than remained activity in high condition. Leaves adapted to 100$\mu$mol m$^{-2}$ s$^{-1}$ PPFD had a peak response similar to that of 200$\mu$mol m$^{-2}$ s$^{-1}$ at 18$^{\circ}C$, but in above PPFD cycle(300, 400$\mu$mol m$^{-2}$ s$^{-1}$ ) it represented at 17$^{\circ}C$ and 16$^{\circ}C$, re-spectively. $CO_2$ evolution in dark condition increased rapidly when leaf temperature was increased up to 28$^{\circ}C$ and then 'dipped' below steady-state level from above 4$0^{\circ}C$. Thus, Pananx ginseng is able to take advantage of irradiance increase and decrease of $CO_2$ evolution in dark condition to control leaf temperature.mperature.

  • PDF

Spore Germination of Some Plant Pathogenic Fungi under Different Soil Conditions in Relation to Soil Fungistasis (토양조건에 따른 몇가지 식물병원균의 포자발아와 토양정균 현상)

  • Lee Min Woong;Choi Hae Jung;Shim Jae Ouk
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.157-164
    • /
    • 1985
  • Some interactions in various soil conditions, numbers of microbial populations, root rot disease development and rates of spore germiation in three different location of soils were investigated. The calcium and magnesium contents were higher in replanted fields of ginseng (Panax ginseng) at Goesan. Potassium contents were high in replanted field at Poonggi and textural class of the soils was silt loam except for silt clay loam in first cultured field of ginseng at Goesan. For the germination process of Fusarium solani, F. moniliforme, F. oxysporum, and Alternaria panax, the percentage germination of fungal spores was high in double distilled water and Pfeffer's solution as media, whereas the lower rate of germination of spores was observed in soil extracts. Numbers of bacteria were high in replanted field soil at Gumsan, and propagules of fungi in replanted fields at Gumsan and Poonggi were higher than other soils, but higher numbers of actinomycetes were found in the first cultured field of ginseng at Goesan and Poonggi. Fungistasis was induced by higher microbial populations present in soil that was initiated when amended with garlic stalk, crushed bean and ginseng leaves. On the other hand, there was no fungistasis in soil amended with wheat and barley straw, and this tendency was a little difference on the soil sample.

  • PDF

Antineoplastic Natural Products and the Analogues (XI) -Cytotoxic Activity against L1210 Cell of Some Raw Drugs from the Oriental Medicine and Folklore- (항암성 천연물 및 그 유사체(XI) -한약재 및 민간약의 L1210세포에 대한 세포독성-)

  • Lee, Jeong-Hyung;Kang, Suck-Kyun;Ahn, Byung-Zun
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.4
    • /
    • pp.286-291
    • /
    • 1986
  • Forty herbal drugs which are described to have potential antitumor activity were solvent-fractionated with petroleum ether, ether and ethyl acetate in sequence. The cytotoxic activity was mostly shown in the ether fraction(40.54%) and petroleum ether fraction (35.15%), but scarcely in the water phase (10.8%), meaning that most of the active components had less polar property. Twenty-seven percent of the drugs tested were active, which is higher value than 10.4% of the random sampled drugs The drugs possessing the $ED_{50}$ values less than $10{mu}g/ml$ were the roots of Lithospermum erythrorhizon, Curcuma domestica, Salvia miltiorrhiza, Astragalus membraneceus and Scutellaria indica, the leaves of Panax ginseng, S. indica and Liriodendron tulipifera, the barks of Picrasma ailanthoides and Rhus vernifera, the herbs of Agrimonia pilosa and Siegesbeckia pubescens the seeds of Tricosanthes kirilowii, P. ailanthoides, and the stem of P. ginseng.

  • PDF

Effect of Light Intensity and Soil Water Regimes on the Growth of Ginseng (Panax ginseng C. A. Meyer) Seedling. (1 묘포의 광도및 토양함수량이 인삼의 생육에 미치는 영향)

  • Lee, S.S;Lee, C.H.;Park, H.
    • Journal of Ginseng Research
    • /
    • v.8 no.1
    • /
    • pp.65-74
    • /
    • 1984
  • This experiment was carried out to study the effects of light intensity and soil water regimes on the growth of ginseng seedling. The results were as follows: 1. The maximum light intensity and optimum temperature in 1,le photosynthesis of ginseng seedling were 10,000 lux and 23 $^{\circ}C$. Respiration rate was increased at high temperature. 2. Air and soil temperature under the shading were increased as the increase of light intensity but soil water contents were decreased as the increase of light intensity, whereas air and soil temperature were decreased as the increase of precipitation under the shade b5: soil water contents were increased as the increase of precipitation under the shade. 3. The higher the transmittance of the shade, the greater the specific leaf weight (S.L.W.) and stomatal density. In contrast, however, the contents of total chlorophyll, chlorophyll a and b, and stomatal length was decreased. There was no any significant difference light intensity of the a/b ratio of chlorophyll. 4. The highest photosynthesis was occurred in ginseng leaves grown under the shade 5% L.T.R. and net photosynthesis rates increased with increasing soil water contents. 5. Optimum condition for usable seedling yield were 5% L.T.R. and 3.3% precipitation under the shade. Useless seedling increased with increasing precipitation under the shade.

  • PDF