• Title/Summary/Keyword: Panax ginseng C.A Meyer

Search Result 954, Processing Time 0.025 seconds

Vessel Elements of Panax ginseng C.A. Meyer (인삼 (Panax ginseng C.A. Meyer)의 도관요소)

  • 정병갑
    • Journal of Plant Biology
    • /
    • v.31 no.3
    • /
    • pp.169-185
    • /
    • 1988
  • Vessel elements in lateral root, tap root, transition region, stem and mid vein of 1-year old, 3-year old and 5-year old ginseng (Panax ginseng C.A. Meyer) are studied with light microscope to clarify the distribution and differentiation of several kinds of vessel elements. Vessel elements are classified into five types such as ring vessel, spiral vessel, scalariform vessel, reticulate vessel and pitted vessel according to the secondary thickenings of cell wall. All of the five types are not observed in each organ, but diverse kinds of vessels are present in stem and mid vein compared with the underground organs such as tap root and lateral root. The length of vessel elements is longest (680$\mu$m) in stem and shortest (143$\mu$m) in tap root. The diameter of vessel elements is 19.0$\mu$m in tap root and the angle of perforation plate comes under 22$^{\circ}$-60$^{\circ}$. The degree of differentiation of vessel elements according to the length, diameter and angle of perforation plate of vessel elements is highest in tap root regardless of the age of ginseng. Three types of perforation plate such as scalariform, intermediate type of simple and scalariform, and simple perforation plate are observed. The vascular tracheids are characteristically observed in mid vein of 1-year old ginseng, and in transition region of 3 and 5-year old ginseng.

  • PDF

Studies on Phytouthora disease of Panax ginseng C. A Meyer; its causal agent and possible control measures (인삼의 질병.병원균 및 방지책에 관하여)

  • 오승환;박창석
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.186-193
    • /
    • 1980
  • The causal organism of Phytophthora disease on Panax ginseng Meyer in Korea was isolated and identified as Phytophthora cactorum. It's pathogenicity, etiology, and possible control measures were investigated. Disease symptoms on various parts of ginseng plants were also described The fungus caused seedling and mature plant blight and root rot. Oospores were easily formed on potato dextrose agar and corn meal agar. Oospores, however, were not formed in the diseased root tissues but did in the in footed shoots such as leaves, petioles, and stems and in the inoculated berries.

  • PDF

Panaxyne epoxide, A New Cytotoxic Polyyne from Panax ginseng Root against L210 Cells

  • Kim, Shin-Il;Kang, Kyu-Sang;Lee, You-Hui
    • Archives of Pharmacal Research
    • /
    • v.12 no.1
    • /
    • pp.48-51
    • /
    • 1989
  • A new polyacetylene compound with cytotoxic activity against L1210 cells having diyne-ene and epoxy moiety, named panaxyne epoxide, was isolated from Panax ginseng C.A. Meyer. The chemical structure of the polyacetylene was determined to be tetradeca-13-ene-1,3-diyne-6,7-epoxide by UV, IR, $^1H-NMR,\;^{l3}$C-NMR and mass spectra.

  • PDF

Neuroprotective and Anti-inflammatory Effects of Phenolic Compounds in Panax ginseng C.A. Meyer (인삼에 함유된 페놀성 선분의 신경세포보호 및 항염증 효과)

  • Kong, Yeon-Hee;Lee, Young-Chul;Choi, Sang-Yoon
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.111-114
    • /
    • 2009
  • The six phenolic-compound (ascorbic acid, maltol, esculetin,p-coumaric acid, cinnamic acid, and quercetin) contents of Panax ginseng c.A. Meyer were determined in this study. The results showed that the ascorbic acid, cinnamic acid, and esculetin contents of Panax ginseng C.A. Meyer are higher than those of the other ingredients. Among these compounds, ascorbic acid and cinnamic acid significantly inhibited LPS-induced nitric oxide production in the RAW 264.7 cells. Cinnamic acid also effectively inhibited the oxidative damages in the human neuroblastoma SH-SY5Y cells. Although this study examined the neuroprotective and anti-inflammatory activities using only one kind of cells, its results suggest that cinnarnic acid potently contributes to the neuroprotective and anti-inflammatory properties of Panax ginseng C.A. Meyer.

Protective effect of Ginseng Petroleum Ether Extract Against Lipid Peroxidation and Oxidative DNA Damage (인삼지용성성분의 지질과산화 및 산화적 DNA손상에 대한 억제효과)

  • 허문영
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.315-320
    • /
    • 1997
  • Panax ginseng C.A. Meyer has been extensively used in the traditional oriental medicine as a restorative, tonic and prophylatic agent. This study was devised to develop a chemopreventive agent from panax ginseng to be able to suppress the genotoxicity and oxidative damage by ractive oxygen species, which are involved with cancer or aging. Ginseng petroleum ether extract (GPE) and one of its fraction, P2, showed an antioxidative effect on the lipid peroxidiphenyl-2-picryl hydrazil (DppH) radical generation. They also showed the suppressive effect of H2O2 or KO2 induced DNA damage by single cell gel electrophoresis (SCGE). Results from our study indicate that GPE and P2 are capable of protecting lipid peroxidation, and oxidative DNA damage. Therefore, GPE and P2 may be useful chempreventive agents which are involved with cancer and aging.

  • PDF

Isolation and Characterization of Malate Dehydrogenase Gene from Panax ginseng C.A. Meyer (고려인삼에서 Malate Dehydrogenase 유전자의 분리 및 분석)

  • Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;Jung, Dae-Young;In, Jun-Gyo;Lee, Bum-Soo;Min, Byung-Hoon;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • Malate dehydrogenase is a ubiquitous enzyme in plants, involving in a range of metabolic processes depending on its subcellular location. A malate dehydrogenase (PgMDH) cDNA was isolated and characterized from the root of Panax ginseng C. A. Meyer. The deduced amino acid sequence of PgMDH showed high similarity with the NAD-dependent mitochondrial malate dehydrogenase from Glycinemax (P17783), Eucalyptus gunnii (P46487), and Lycopersicon esculentum (AAU29198). And the segment of a malate dehydrogenase gene was amplified through RT-PCR. The expression of PgMDH was increased after treatments of chilling, salt, UV, cadmium or copper treatment.

Physicochemical properties of Korean Ginseng (panax ginseng, C.A. meyer) Root Starch 3. Physical properties of the starch (고려인삼(Panax ginseng C.A. Meyer) 전분의 이화학적 특성에 관한 연구 제3보 전분의 물리적 특성)

  • 김해중;주재선
    • Journal of Ginseng Research
    • /
    • v.8 no.2
    • /
    • pp.135-152
    • /
    • 1984
  • Solubility and degree of swelling of the starch were about 15% and 30%, respectively when the starch in agueous solution was heated at 90$^{\circ}C$ for 30minutes. The starch showed no singnificant differences in the degree of swelling and soblubility with a growing period of ginseng. The starch was begun gelatinize at 50-55$^{\circ}C$ and completed at 65-70$^{\circ}C$ by the amy tical methods of X-ray diffraction, disappearance of crystalinity. Brabender angly lographic analysis and amylase digestion test. The maximum and minimum peak viscosities of 10% starch solution were 5.500 B.U and 1960 B.U, respectively. The starch showed no significant differences in pasting temperature, maximum and minimum viscosities on amylogram with a growing period of ginseng. The intrinsic viscosities of the starch and amylose were 0.54 and 1.5-1.9, respectively.

  • PDF

STUDIES ON THE CONSTITUENTS OF RADIX PANAX GINSENG C.A. MEYER

  • Horhammer L.;Wagner H.;Lay H
    • Proceedings of the Ginseng society Conference
    • /
    • 1974.09a
    • /
    • pp.45-48
    • /
    • 1974
  • [ $\beta$-Sitosterol and oleanolic acid were isolated in a pure form from Radix Panax Ginseng, the genuine Ginseng drug, by column chromatography on Silicagel and aluminium oxide (Woelm). TLC indicates the presence of at least three other triterpene sapogenins.

  • PDF

Anticlastogenic Effect of Petroleum Ether Extract of Panax ginseng Against Carcinogens-induced Micronuclei in Mice (인삼 석유에테르 추출물이 흰쥐에서 여러 발암성물질에 의해 유도된 소핵생성의 억제효과)

  • Choi, Sung-Gyu;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.36 no.4
    • /
    • pp.334-340
    • /
    • 1992
  • Ethanol, total saponin and petroleum ether extract of Panax ginseng C.A. Meyer were tested for their anticlastogenic effects against induction of micronuclei by cyclophosphamide and benzo(a)pyrene in mice. Ginseng petroleum ether extract (GPEE) showed the highest suppressive effect among three extracts. GPEE was also tested to compare their anticlastogenic effect against several well-known carcinogens: such as mitomycin C, 7, 12-dimethyl benzo(a)anthracene, ethyl methane sulfonate, dimethylnitrosamine and busulfan. GPEE showed the anticlastogenic effect against most of carcinogens, although there were no significant effects against 7, 12-dimethyl benzo(a) anthracene, dimethyl nitrosoamine and busulfan-induced micronuclei.

  • PDF