• Title/Summary/Keyword: Palmar cutaneous branch

Search Result 9, Processing Time 0.028 seconds

Anatomical Study on the Heart Meridian Muscle in Human

  • Park Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.11-17
    • /
    • 2005
  • This study was carried out to identify the components of the human heart meridian muscle, the regional muscle group being divided into outer, middle, and inner layers. The inner parts of the body surface were opened widely to demonstrate muscles, nerves, blood vessels and to expose the inner structure of the heart meridian muscle in the order of layers. We obtained the following results; $\cdot$ The heart meridian muscle is composed of muscles, nerves and blood vessels. $\cdot$ In human anatomy, the difference between terms is present (that is, between nerves or blood vessels which control the meridian muscle and those which pass near by). $\cdot$ The inner composition of the heart meridian muscle in the human arm is as follows: 1) Muscle H-l: latissimus dorsi muscle tendon, teres major muscle, coracobrachialis muscle H-2: biceps brachialis muscle, triceps brachialis muscle, brachialis muscle H-3: pronator teres muscle and brachialis muscle H-4: palmar carpal ligament and flexor ulnaris tendon H-5: palmar carpal ligament & flexor retinaculum, tissue between flexor carpi ulnaris tendon and flexor digitorum superficialis tendon, flexor digitorum profundus tendon H-6: palmar carpal ligament & flexor retinaculum, flexor carpi ulnaris tendon H-7: palmar carpal ligament & flexor retinaculum, tissue between flexor carpi ulnaris tendon and flexor digitorum superficial is tendon, flexor digitorum profundus tendon H-8: palmar aponeurosis, 4th lumbrical muscle, dorsal & palmar interrosseous muscle H-9: dorsal fascia, radiad of extensor digiti minimi tendon & extensor digitorum tendon 2) Blood vessel H-1: axillary artery, posterior circumflex humeral artery H-2: basilic vein, brachial artery H-3: basilic vein, inferior ulnar collateral artery, brachial artery H-4: ulnar artery H-5: ulnar artery H-6: ulnar artery H-7: ulnar artery H-8: palmar digital artery H-9: dorsal digital vein, the dorsal branch of palmar digital artery 3) Nerve H-1: medial antebrachial cutaneous nerve, median n., ulnar n., radial n., musculocutaneous n., axillary nerve H-2: median nerve, ulnar n., medial antebrachial cutaneous n., the branch of muscular cutaneous nerve H-3: median nerve, medial antebrachial cutaneous nerve H-4: medial antebrachial cutaneous nerve, ulnar nerve H-5: ulnar nerve H-6: ulnar nerve H-7: ulnar nerve H-8: superficial branch of ulnar nerve H-9: dorsal digital branch of ulnar nerve.

  • PDF

Anatomical variations of the innervated radial artery superficial palmar branch flap: A series of 28 clinical cases

  • Yang, Jae-Won
    • Archives of Plastic Surgery
    • /
    • v.47 no.5
    • /
    • pp.435-443
    • /
    • 2020
  • Background The innervated radial artery superficial palmar branch (iRASP) flap was designed to provide consistent innervation by the palmar cutaneous branch of the median nerve (PCMN) to a glabrous skin flap. The iRASP flap is used to achieve coverage of diverse volar defects of digits. However, unexpected anatomical variations can affect flap survival and outcomes. Methods Cases in which patients received iRASP flaps since April 1, 2014 were retrospectively investigated by reviewing the operation notes and intraoperative photographs. The injury type, flap dimensions, arterial and neural anatomy, secondary procedures, and complications were evaluated. Results Twenty-eight cases were reviewed, and no flap failures were observed. The observed anatomical variations were the absence of a direct skin perforator, large-diameter radial artery superficial palmar branch (RASP), and the PCMN not being a single branch. Debulking procedures were performed in 16 cases (57.1%) due to flap bulkiness. Conclusions In some cases, an excessively large RASP artery was observed, even when there was no direct skin perforator from the RASP or variation in the PCMN. These findings should facilitate application of the iRASP flap, as well as any surgical procedures that involve potential damage to the PCMN in the inter-thenar crease region. Additional clinical cases will provide further clarification regarding potential anatomical variations.

Study on the Anatomical Pericardium Meridian Muscle in Human (수궐음 심포경근의 해부학적 고찰)

  • Park, Kyoung-Sik
    • Korean Journal of Acupuncture
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2005
  • Objectives : This study was carried to identify the component of the Pericardium Meridian Muscle in human. Methods : The regional muscle group was divided into outer, middle, and inner layer. The inner part of body surface were opened widely to demonstrate muscles, nerve, blood vessels and to expose the inner structure of the Pericardium Meridian Muscle in the order of layers. Results We obtained the results as follows; He Perfcardium Meridian Muscle composed of the muscles, nerves and blood vessels. In human anatomy, it is present the difference between terms (that is, nerves or blood vessels which control the muscle of the Pericardium Meridian Muscle and those which pass near by the Pericardium Meridian Muscle). The inner composition of the Pericardium Meridian Muscle in human is as follows ; 1) Muscle P-1 : pectoralis major and minor muscles, intercostalis muscle(m.) P-2 : space between biceps brachialis m. heads. P-3 : tendon of biceps brachialis and brachialis m. P-4 : space between flexor carpi radialis m. and palmaris longus m. tendon(tend.), flexor digitorum superficialis m., flexor digitorum profundus m. P-5 : space between flexor carpi radialis m. tend. and palmaris longus m. tend., flexor digitorum superficialis m., flexor digitorum profundus m. tend. P-6 : space between flexor carpi radialis m. tend. and palmaris longus m. tend., flexor digitorum profundus m. tend., pronator quadratus m. H-7 : palmar carpal ligament, flexor retinaculum, radiad of flexor digitorum superficialis m. tend., ulnad of flexor pollicis longus tend. radiad of flexor digitorum profundus m. tend. H-8 : palmar carpal ligament, space between flexor digitorum superficialis m. tends., adductor follicis n., palmar interosseous m. H-9 : radiad of extensor tend. insertion. 2) Blood vessel P-1 : lateral cutaneous branch of 4th. intercostal artery, pectoral br. of Ihoracoacrornial art., 4th. intercostal artery(art) P-3 : intermediate basilic vein(v.), brachial art. P4 : intermediate antebrachial v., anterior interosseous art. P-5 : intermediate antebrarhial v., anterior interosseous art. P-6 : intermediate antebrachial v., anterior interosseous art. P-7 : intermediate antebrachial v., palmar carpal br. of radial art., anterior interosseous art. P-8 : superficial palmar arterial arch, palmar metacarpal art. P-9 : dorsal br. of palmar digital art. 3) Nerve P-1 : lateral cutaneous branch of 4th. intercostal nerve, medial pectoral nerve, 4th. intercostal nerve(n.) P-2 : lateral antebrachial cutaneous n. P-3 : medial antebrachial cutaneous n., median n. musrulocutaneous n. P-4 : medial antebrachial cutaneous n., anterior interosseous n. median n. P-5 : median n., anterior interosseous n. P-6 : median n., anterior interosseous n. P-7 : palmar br. of median n., median n., anterior interosseous n. P-8 : palmar br. of median n., palmar digital br. of median n., br. of median n., deep br. of ulnar n. P-9 : dorsal br. of palmar digital branch of median n. Conclusions : This study shows some differences from already established study on meridian Muscle.

  • PDF

The Radial Artery Superficial Palmar (RASP) Branch Free Flap for Finger Soft Tissue Reconstruction (요골 동맥 표재 수장 분지 유리 피판술을 이용한 수지 연부 조직의 재건)

  • Kim, Yong-Jin;Suh, Young-Suk;Lee, Sang-Hyun;Hahm, Dong-Gil
    • Archives of Reconstructive Microsurgery
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • The radial artery superficial palmar branch free flap is based on the perforators of the superficial palmar branch of the radial artery and its venae comitantes. This flap can be used as a sensible flap including palmar cutaneous branch of the median nerve. Forty radial artery superficial palmar branch free flaps were performed at Centum Institute during October 2010 to December 2011. There were 32 males and 8 females and their mean age were 48 years (range 30 to 66 years). The thumb injured in 13 patients, the index finger in 16 patients, the middle finger in 4 patients, the ring finger in 2 patients, and the little finger in 5 patients. The mean size of the flap was $2.5{\times}3.5$ cm(range $2{\times}2.5$ to $3{\times}7$ cm). The donor site was always closed primarily. The overall survival rate was 90.2 percent. The flaps showed well-padded tissue with glabrous skin. All patients have touch sensation and showed 12 mm two point discrimination in an average(range 8 to 15 mm). Donor site morbidity was conspicuous. One patient showed unsightly scar. Early postoperative range of motion of the affected thumb showed slightly limited radial and palmar abduction. But it improved after postoperative 2 months, and patients did not complaint limitation of motion. In conclusion, the radial artery superficial palmar branch free flap can be used as an option for soft tissue reconstruction of finger defects where local or island flaps are unsuitable.

  • PDF

Anatomy of Large Intestine Meridian Muscle in human (수양명경근(手陽明經筋)의 해부학적(解剖學的) 고찰(考察))

  • Sim Young;Park Kyoung-Sik;Lee Joon-Moo
    • Korean Journal of Acupuncture
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2002
  • This study was carried to identify the component of Large Intestine Meridian Muscle in human, dividing into outer, middle, and inner part. Brachium and antebrachium were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Large Intestine Meridian Muscle. We obtained the results as follows; 1. Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows. 1) Muscle; extensor digitorum tendon(LI-1), lumbrical tendon(LI-2), 1st dosal interosseous muscle(LI-3), 1st dosal interosseous muscle and adductor pollicis muscle(LI-4), extensor pollicis longus tendon and extensor pollicis brevis tendon(LI-5), adductor pollicis longus muscle and extensor carpi radialis brevis tendon(LI-6), extensor digitorum muscle and extensor carpi radialis brevis mucsle and abductor pollicis longus muscle(LI-7), extensor carpi radialis brevis muscle and pronator teres muscle(LI-8), extensor carpi radialis brevis muscle and supinator muscle(LI-9), extensor carpi radialis longus muscle and extensor carpi radialis brevis muscle and supinator muscle(LI-10), brachioradialis muscle(LI-11), triceps brachii muscle and brachioradialis muscle(LI-12), brachioradialis muscle and brachialis muscle(LI-13), deltoid muscle(LI-14, LI-15), trapezius muscle and supraspinous muscle(LI-16), platysma muscle and sternocleidomastoid muscle and scalenous muscle(LI-17, LI-18), orbicularis oris superior muscle(LI-19, LI-20) 2) Nerve; superficial branch of radial nerve and branch of median nerve(LI-1, LI-2, LI-3), superficial branch of radial nerve and branch of median nerve and branch of ulna nerve(LI-4), superficial branch of radial nerve(LI-5), branch of radial nerve(LI-6), posterior antebrachial cutaneous nerve and branch of radial nerve(LI-7), posterior antebrachial cutaneous nerve(LI-8), posterior antebrachial cutaneous nerve and radial nerve(LI-9, LI-12), lateral antebrachial cutaneous nerve and deep branch of radial nerve(LI-10), radial nerve(LI-11), lateral antebrachial cutaneous nerve and branch of radial nerve(LI-13), superior lateral cutaneous nerve and axillary nerve(LI-14), 1st thoracic nerve and suprascapular nerve and axillary nerve(LI-15), dosal rami of C4 and 1st thoracic nerve and suprascapular nerve(LI-16), transverse cervical nerve and supraclavicular nerve and phrenic nerve(LI-17), transverse cervical nerve and 2nd, 3rd cervical nerve and accessory nerve(LI-18), infraorbital nerve(LI-19), facial nerve and infraorbital nerve(LI-20). 3) Blood vessels; proper palmar digital artery(LI-1, LI-2), dorsal metacarpal artery and common palmar digital artery(LI-3), dorsal metacarpal artery and common palmar digital artery and branch of deep palmar aterial arch(LI-4), radial artery(LI-5), branch of posterior interosseous artery(LI-6, LI-7), radial recurrent artery(LI-11), cephalic vein and radial collateral artery(LI-13), cephalic vein and posterior circumflex humeral artery(LI-14), thoracoacromial artery and suprascapular artery and posterior circumflex humeral artery and anterior circumflex humeral artery(LI-15), transverse cervical artery and suprascapular artery(LI-16), transverse cervical artery(LI-17), SCM branch of external carotid artery(LI-18), facial artery(LI-19, LI-20)

  • PDF

Neurovascular Island Flap Transfer from a Dorsum of the Finger (수지 배측 피부를 이용한 신경혈관 도서형 피판술)

  • Kim, Poong-Taek;Kim, Ik-Dong;Kim, Jae-Hyung
    • Archives of Reconstructive Microsurgery
    • /
    • v.7 no.1
    • /
    • pp.10-14
    • /
    • 1998
  • When covering a skin defect of the finger with a local flap is difficult, a vascular island flap is often used. For a palmar skin defect, it is desirable to add a sensory supply to the flap. This report describes a neurovascular island flap that was used to repair a palmar skin defect, the donor skin coming from the dorsal region of the middle phalanx. This flap is elevated with a vascular pedicle of the palmar digital artery and its dorsal skin branch, including the dorsal digital veins, palmar digital nerve and its cutaneous branches. The advantage of this flap are that it can be transferred with ease and without any tension. No special manipulation is required under a microscope and operation can be performed under a simple nerve-block. There if little possibility that the flap itself undergoes ischemic change or congestion. The disadvantage of this flap are that a skin graft is required at the donor skin site and one palmar digital aretery is lost. We think that this neurovascular island flap is one of the useful methods for skin defects that are difficult to cover with a local flap.

  • PDF

Surgical Treatment of Carpal Tunnel Syndrome through a Minimal Incision on the Distal Wrist Crease: An Anatomical and Clinical Study

  • Yoo, Hye Mi;Lee, Kyoung Suk;Kim, Jun Sik;Kim, Nam Gyun
    • Archives of Plastic Surgery
    • /
    • v.42 no.3
    • /
    • pp.327-333
    • /
    • 2015
  • Background An anatomical analysis of the transverse carpal ligament (TCL) and the surrounding structures might help in identifying effective measures to minimize complications. Here, we present a surgical technique based on an anatomical study that was successfully applied in clinical settings. Methods Using 13 hands from 8 formalin-fixed cadavers, we measured the TCL length and thickness, correlation between the distal wrist crease and the proximal end of the TCL, and distance between the distal end of the TCL and the palmar arch; the TCL cross sections and the thickest parts were also examined. Clinically, fasciotomy was performed on the relevant parts of 15 hands from 13 patients by making a minimally invasive incision on the distal wrist crease. Postoperatively, a two-point discrimination check was conducted in which the sensations of the first, second, and third fingertips and the palmar cutaneous branch injuries were monitored (average duration, 7 months). Results In the 13 cadaveric hands, the distal wrist crease and the proximal end of the TCL were placed in the same location. The average length of the TCL and the distance from the distal TCL to the superficial palmar arch were $35.30{\pm}2.59mm$ and $9.50{\pm}2.13mm$, respectively. The thickest part of the TCL was a region 25 mm distal to the distal wrist crease (average thickness, $4.00{\pm}0.57mm$). The 13 surgeries performed in the clinical settings yielded satisfactory results. Conclusions This peri-TCL anatomical study confirmed the safety of fasciotomy with a minimally invasive incision of the distal wrist crease. The clinical application of the technique indicated that the minimally invasive incision of the distal wrist crease was efficacious in the treatment of the carpal tunnel syndrome.

A Modified Free Thenar Flap with Constant Innervations and Its Clinical Application (일관된 신경 지배를 위한 유리 무지구피판의 수정과 그의 임상 적용)

  • Han, Seung-Kyu;Yang, Jae-Won;Kim, Jin-Soo;Lee, Dong-Chul;Ki, Sae-Hwi;Roh, Si-Young
    • Archives of Plastic Surgery
    • /
    • v.38 no.5
    • /
    • pp.663-668
    • /
    • 2011
  • Purpose: A modified free thenar flap was designed for coverage of volar finger defect with constant innervation using the palmar cutaneous branch of the median nerve. After clinical application of this flap, sensory results were evaluated in 6 cases. Methods: Patients were selected who have volar soft tissue defect with or without fingertip defect. The six cases of the innervated free thenar flap were performed since September 2009, and sensory outcomes were evaluated by the Semmes-Weinstein monofilament and two-point discriminator at four and half month after the surgery. Results: The Semmes-Weinstein Monofilament test revealed 3 cases showed 2.83, 1 case showed 3.61, 1 case showed 4.31 and 1 case showed 4.56. The static two-point discrimination test revealed 1 case showed 4 mm, 1 case showed 6 mm, 2 cases showed 9 mm, and 2 cases showed over 15 mm. The moving two-point discrimination test revealed 1 case showed 3 mm, 1 case showed 4 mm, 1 case showed 5 mm, 1 case showed 7 mm, and 2 cases showed over 15 mm. The donor sites showed no significant limitation of the thumb and neuroma formation. Conclusion: The innervated free thenar flap showed good sensory outcomes as a sensate free flap in a short time after surgery. It can be an option for coverage of volar finger defects that requires sensation.

Anatomical study on The Arm Greater Yang Small Intestine Meridian Muscle in Human (수태양소장경근(手太陽小腸經筋)의 해부학적(解剖學的) 연구(硏究))

  • Park, Kyoung-Sik
    • Journal of Pharmacopuncture
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 2004
  • This study was carried to identify the component of Small Intestine Meridian Muscle in human, dividing the regional muscle group into outer, middle, and inner layer. the inner part of body surface were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Small Intestine Meridian Muscle. We obtained the results as follows; 1. Small Intestine Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows ; 1) Muscle ; Abd. digiti minimi muscle(SI-2, 3, 4), pisometacarpal lig.(SI-4), ext. retinaculum. ext. carpi ulnaris m. tendon.(SI-5, 6), ulnar collateral lig.(SI-5), ext. digiti minimi m. tendon(SI-6), ext. carpi ulnaris(SI-7), triceps brachii(SI-9), teres major(SI-9), deltoid(SI-10), infraspinatus(SI-10, 11), trapezius(Sl-12, 13, 14, 15), supraspinatus(SI-12, 13), lesser rhomboid(SI-14), erector spinae(SI-14, 15), levator scapular(SI-15), sternocleidomastoid(SI-16, 17), splenius capitis(SI-16), semispinalis capitis(SI-16), digasuicus(SI-17), zygomaticus major(Il-18), masseter(SI-18), auriculoris anterior(SI-19) 2) Nerve ; Dorsal branch of ulnar nerve(SI-1, 2, 3, 4, 5, 6), br. of mod. antebrachial cutaneous n.(SI-6, 7), br. of post. antebrachial cutaneous n.(SI-6,7), br. of radial n.(SI-7), ulnar n.(SI-8), br. of axillary n.(SI-9), radial n.(SI-9), subscapular n. br.(SI-9), cutaneous n. br. from C7, 8(SI-10, 14), suprascapular n.(SI-10, 11, 12, 13), intercostal n. br. from T2(SI-11), lat. supraclavicular n. br.(SI-12), intercostal n. br. from C8, T1(SI-12), accessory n. br.(SI-12, 13, 14, 15, 16, 17), intercostal n. br. from T1,2(SI-13), dorsal scapular n.(SI-14, 15), cutaneous n. br. from C6, C7(SI-15), transverse cervical n.(SI-16), lesser occipital n. & great auricular n. from cervical plexus(SI-16), cervical n. from C2,3(SI-16), fascial n. br.(SI-17), great auricular n. br.(SI-17), cervical n. br. from C2(SI-17), vagus n.(SI-17),hypoglossal n.(SI-17), glossopharyngeal n.(SI-17), sympathetic trunk(SI-17), zygomatic br. of fascial n.(SI-18), maxillary n. br.(SI-18), auriculotemporal n.(SI-19), temporal br. of fascial n.(SI-19) 3) Blood vessels ; Dorsal digital vein.(SI-1), dorsal br. of proper palmar digital artery(SI-1), br. of dorsal metacarpal a. & v.(SI-2, 3, 4), dorsal carpal br. of ulnar a.(SI-4, 5), post. interosseous a. br.(SI-6,7), post. ulnar recurrent a.(SI-8), circuirflex scapular a.(SI-9, 11) , post. circumflex humeral a. br.(SI-10), suprascapular a.(SI-10, 11, 12, 13), first intercostal a. br.(SI-12, 14), transverse cervical a. br.(SI-12,13,14,15), second intercostal a. br.(SI-13), dorsal scapular a. br.(SI-13, 14, 15), ext. jugular v.(SI-16, 17), occipital a. br.(SI-16), Ext. jugular v. br.(SI-17), post. auricular a.(SI-17), int. jugular v.(SI-17), int. carotid a.(SI-17), transverse fascial a. & v.(SI-18),maxillary a. br.(SI-18), superficial temporal a. & v.(SI-19).