• Title/Summary/Keyword: Paldang reservoir

Search Result 76, Processing Time 0.024 seconds

Phosphorus Budget of a River Reservoir, Paldang (하천형 호수인 팔당호의 인 수지)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.270-284
    • /
    • 2018
  • Paldang is a river reservoir located in the Midwest of Korea, with a water volume of $244{\cdot}10^6m^3$ and a water surface area of $36.5km^2$. It has eutrophied since the construction of a dam at the end of 1973, and the phosphorus concentration has decreased since 2001. Average hydraulic residence time of the Paldang reservoir is about 10 days during the spring season and 5.6 days as an annual level. The hydraulics and water quality of the reservoir can differ greatly, both temporally and spatially. For the spring period (March to May) in 2001 ~ 2017, the reservoir mean total phosphorus concentration calculated from the budget model based on a plug-flow system (PF) and a continuous stirred-tank reaction system (CSTR) was 13 % higher and 10 % lower than the observed concentration, respectively. A composite flow system (CF) was devised by assuming that the transition zone was plug flow, and that the lacustrine zone was completely mixed. The mean concentration calculated from the model based on CF was not skewed from the observed concentration, and showed just 6 % error. The retention coefficient of the phosphorus derived from the CF was 0.30, which was less than those of the natural lakes abroad or river reservoirs in Korea. The apparent settling velocity of total phosphorus was estimated to be $93m\;yr^{-1}$, which was 6 ~ 9 times higher than those of foreign natural lakes. Assuming CF, the critical load line for the total phosphorus concentration showed a hyperbolic relation to the hydraulic load in the Paldang reservoir. This is different from the previously known straight critical load line. The trophic state of the Paldang reservoir has recently been estimated to be mesotrophic based on the critical-load curve of the phosphorus budget model developed in this study. Although there is no theoretical error in the newly developed budget model, it is necessary to verify the validity of the portion below the inflection point of the critical-load curve afterwards.

Linear Spectral Mixture Analysis of Landsat Imagery for Wetland land-Cover Classification in Paldang Reservoir and Vicinity

  • Kim, Sang-Wook;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Wetlands are lands with a mixture of water, herbaceous or woody vegetation and wet soil. And linear spectral mixture analysis (LSMA) is one of the most often used methods in handling the spectral mixture problem. This study aims to test LSMA is an enhanced routine for classification of wetland land-covers in Paldang reservoir and vicinity (paldang Reservoir) using Landsat TM and ETM+ imagery. In the LSMA process, reference endmembers were driven from scatter-plots of Landsat bands 3, 4 and 5, and a series of endmember models were developed based on green vegetation (GV), soil and water endmembers which are the main indicators of wetlands. To consider phenological characteristics of Paldang Reservoir, a soil endmember was subdivided into bright and dark soil endmembers in spring and a green vegetation (GV) endmember was subdivided into GV tree and GV herbaceous endmembers in fall. We found that LSMA fractions improved the classification accuracy of the wetland land-cover. Four endmember models provided better GV and soil discrimination and the root mean squared (RMS) errors were 0.011 and 0.0039, in spring and fall respectively. Phenologically, a fall image is more appropriate to classify wetland land-cover than spring's. The classification result using 4 endmember fractions of a fall image reached 85.2 and 74.2 percent of the producer's and user's accuracy respectively. This study shows that this routine will be an useful tool for identifying and monitoring the status of wetlands in Paldang Reservoir.

Estimation of WTP for Water Quality Improvements in Paldang Reservoir Using Contingent Valuation (팔당호 수질개선에 대한 소비자 지불의사액 추정)

  • Kim, Bong-Koo;Cho, Yongsung;Kwak, Jae Eun
    • Environmental and Resource Economics Review
    • /
    • v.10 no.3
    • /
    • pp.433-459
    • /
    • 2001
  • The water quality of Paldang reservoir now grades the third class water based on COD criterion, meaning that it is no longer suitable for drinking. This study attempted to estimate the economic value of water quality improvement in Paldang reservoir using CVM. The survey used payment card format to measure the willingness to pay of the questionnaire respondents for the improvement of water quality and also factors that affect the WTP. The survey showed that men rather than women, those had higher income and paid more water supply charges, those who lived in the area for a shorter period of time, those who do not use city water for drinking, had willingness to pay more. The WTP was estimated 4,952 to 5,497 won on a monthly average. The economic value of the improvement of the water quality of Paldang reservoir was estimated between 344.2~382.1 billion won on an annual basis.

  • PDF

Temporal and Spatial Characteristics of Water Quality in a River-Reservoir (Paldang) (하천형 호수인 팔당호 수질의 시공간적 특성)

  • Kong, Dongsoo;Min, Jeong-Ki;Byeon, Myeongseop;Park, Hae Kyung;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.470-486
    • /
    • 2018
  • This study is to investigate the allochthonous load and water quality of a typical river-reservoir, Paldang during spring (March ~ May) of 17 years (2001 ~ 2017). Phosphorus loading from point sources seems to have been reduced by 74 % in the 2010s. As a result, trophic state of the Paldang reservoir, eutrophic during the 2000s, has returned to the lmesotrophic state. Along with decrease in phosphorus concentration, standing crops of algae (Chl.a) decreased, and concentration of biodegradable organic material decreased to the past level. Concentration of total suspended solids has decreased, and it is due to the decrease of phytoplankton standing crops since the mid-2000s. As transparency increased, it is estimated that euphotic area increased by 22 % and euphotic capacity expanded by 27 %. In the river/transition zone of Paldang, concentration of organic matter increases slightly due to algal growth, but concentration of all water quality items decreases in the lacustrine zone. Although algal growth rate revealed positive correlation with concentration of phosphorus, it was insignificant. Algal growth appeared to be dependent on renewal of phosphorus by flow, than either flow rate or phosphorus concentration. The empirical model including inflow phytoplankton concentration fit well with observed values, and indicates the Paldang reservoir is greatly influenced by allochthonous loads.

Correlation between Phytoplankton Dynamics and Water Quality in Paldang Reservoir (팔당호에서 식물플랑크톤 군집 동태와 수질과의 상관성)

  • Han, Myung-Soo;Jheong, Weon-Hwa;Park, Jun-Dae;Kim, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.217-224
    • /
    • 2005
  • This study was aimed to analyze the long-term fluctuation of water quality and phytoplankton dynamics of Paldang reservoir in Korea and to assess the relationship between algal bloom patterns and hydrological, limnological data. Diatoms in Paldang reservoir occurred continuously through the year. Blue- green algae occurred during the summer season (from June to Sept.), and the highest count was observed in July. Occurrence pattern of green algae was similar to that of blue-green algae. The rest of algae contained a lot of Cryptomonas spp. whose concentration was high from May to Aug. Dominant algal genera (>>7,000 cells $mL^{-1}$) in Paldang reservoir were Aulacoseira, Cyclotella, Microcystis, and Cryptomonas spp. Microcystis and Anabaena occurred during the summer season. Many different green algal genera were found in Paldang reservoir but their abundances were very low. There were some significant correlations (r>0.3, p<0.05) between algal taxa and water quality; diatoms and water temperature, TP:blue-green algae and water temperature, pH, DO saturation, COD, TP; green algae and water temperature, pH, DO saturation, COD, SS, TP. Furthermore, algal genera and water quality was significantly correlated (r>0.3, p<0.05) ; Aulacoseira and TN, TP; Anabaena and water temperature, DO saturation, COD, TP : Microcystisand water temperature, pH, DO saturation, TP; Coelastrum and COD, SS; Scenedesmus and water temperature, COD, TN, TP; Cryptomonas and DO saturation, TN. In Paldang reservoir, the water temperature had relatively big effect on blue-green algal bloom that was also dependant upon its hydrologic condition.

Flora and Ecological Characteristics of Hydrophytes in the Littoral Zone of Paldang Reservior (팔당호 연안생태계의 수생식물상과 생태적 특성)

  • Lim, Yong-Seok;Ma, Seon-Mi;Na, Seong-Tae;Choi, Hong-Keun;Shin, Hyun-Chur
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.30-44
    • /
    • 2005
  • To investigate the flora and vegetation structure of vascular plants in the littoral zone of Paldang Reservoir, from April, 2003 to April 2004, nine sampling sites were selected. Along the Paldang Reservoir, 128 taxa, consisted of 51 families and 96 genera, were identified, among them, hydrophytes were confirmed as 38 taxa, which was comprised 29.7% to total taxa, whereas hygrophytes were 44 taxa and terrestrial plants were 46 taxa. Emergent hydrophytes consists of 21 taxa, including Phragmites australis and Typha angustifolia, and next, submerged hydrophytes were 8 taxa. However, the kinds and vegetation area of submerged hydorphytes were reduced compared to previous studies. In the littoral zone of Paldang Reservoir, the aquatic vegetation was widely developed near Dumulmori, Yangsuri, and Kwangdong Bridge, downstream of Kyungancheon. The average number of hydrophyte per sampling sites were 2.7 taxa, whereas hygrophytes were 2.5, and land plants were 1.8. In addition, the hydrophytes in the littoral zone of Paldang Reservoir showed the typical vertical zonation pattern like a natural swamp. These results mean that the littoral zone of Paldang Reservoir has the typical characteristics of aquatic plant ecosystem.

New record of the cold freshwater dinoflagellate Palatinus apiculatus (Dinophyceae) from the Paldang Reservoir, Korea

  • Kim, Taehee;Ki, Jang-Seu
    • Journal of Species Research
    • /
    • v.11 no.3
    • /
    • pp.162-168
    • /
    • 2022
  • Compared to marine dinoflagellates, freshwater species are rarely recorded in Korea. In the present study, we isolated a freshwater dinoflagellate, Palatinus, from the Paldang Reservoir, Korea, in December 2021. The overall cell shape was ovoid, and the cell size was 34.3 ㎛ in length (25.8-39.5 ㎛) and 28.4 ㎛ in width (21.5-34 ㎛). An eyespot was usually observed near the sulcal region. The Kofoidian plate formula of the species was determined to be 4', 2a, 7", 6c, 5s, 5''', and 2''''. Apical pore complex was not observed. However, variations in the cingular plate caused by the fusion of 3C and 4C were observed. Analyses of 28S rDNA sequences revealed that the unidentified species is 100% similar to Palatinus apiculatus, and clustered together in the same lineage in the phylogenetic tree (100% bootstrap value). Our findings confirmed that the isolated dinoflagellate is Palatinus apiculatus, which was discovered for the first time in Korean freshwaters.

Description of an unrecorded diatom Fragilaria saxoplanctonica Lange-Bertalot & Ulrich (Bacillariophyceae) from Paldang Reservoir in Korea

  • Ha-Eun Lee;Taehee Kim;Sang Deuk Lee;Jang-Seu Ki
    • Journal of Species Research
    • /
    • v.12 no.4
    • /
    • pp.313-320
    • /
    • 2023
  • Diatoms are unicellular eukaryotic microalgae, and they are highly diversified in aquatic environments. We describe an unrecorded diatom species Fragilaria saxoplanctonica Lange-Bertalot & Ulrich (Bacillariophyceae) collected from Paldang Reservoir, Korea, on 4 April 2022. The valve was needle shaped and narrowly rectangular, its ends were rounded, and no spines were found on the outline of their valves. The valve was 67.2-70.2㎛ in length and 1.4-2.9㎛ in width. The ratio of width-to-length was 1 : 23.2-50.1. The pattern of striation was alternate or opposite, and the number of striae in 10㎛ was 24-26. Molecular comparisons of the 18S rDNA and rbcL sequences showed that it belonged to the genus Fragilaria. These morphological and phylogenetic results confirmed that our species was F. saxoplanctonica, and it was the first record in Korea.

Analyzing Flow Variation and Stratification of Paldang Reservoir Using High-frequency W ater Temperature Data (고빈도 수온 자료를 이용한 팔당호의 성층과 흐름 변화 분석)

  • Ryu, In-Gu;Lee, Bo-Mi;Cho, Yong-Chul;Choi, Hwang-Jeong;Shin, Dong-Seok;Kim, Sang-Hun;Yu, Soon-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.392-404
    • /
    • 2020
  • The focus of this study was to quantify the thermal stratification and analyze the relationship between the stratification structure and the tributaries to understand flow variations in the Paldang Reservoir. The vertical distribution of the temperature and density gradients, and the depth and thickness of the thermocline were quantitatively calculated using a lake physics tool (rLakeAnalyzer) and high-frequency monitoring data. Based on a density gradient of 0.2 kg/㎥/m, the thermocline was formed from mid-May to early-September 2019 and the other periods were weakly stratified or mixed. The thickness of the thermocline was developed until 4.7 m and the depth of the thermocline was formed at a depth of 3 - 6 m at the front of the Paldang Reservoir. During the formation of the thermocline, the Namhangang and Gyeongancheon tributaries with relatively high water temperature (low-density) flowed into the upper layer of the reservoir, and the Bukhangang tributary with low water temperature (high-density) mainly affected the lower layer of the reservoir. This is because the density currents were formed due to the difference in the water temperature of the tributaries. The findings of this study may be used for constructing high-frequency monitoring and quantitative data analyses of reservoirs.

Stratified features in Paldang lake considering induced density currents and seasonal thermal effect (유입하천 밀도와 계절별 수온을 고려한 팔당호 성층 해석)

  • Choi, Suin;Kim, Dongsu;Seo, Ilwon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.99-110
    • /
    • 2024
  • Paldang Reservoir serves as a crucial water source for the metropolitan area, and national efforts are focused on water quality management. The region near Paldang Dam, where the water intake facility with the greatest depth is located, experiences vertical stratification during the summer. It has been challenging to definitively classify whether this stratification is caused by density currents or summer temperatures. This study aimed to differentiate and analyze stratification due to density currents and temperature variations at key locations in the Paldang Reservoir through vertical water quality measurements. The results allowed us to distinguish between density current and temperature-induced stratification. We found that density currents are primarily caused by temperature differences among inflowing rivers, with flow velocity significantly influencing their persistence. Additionally, based on a combination of monsoon and non-monsoon season characteristics, we classified Paldang Reservoir into regions with distinct river and lake traits.