• Title/Summary/Keyword: Paint removal

Search Result 40, Processing Time 0.027 seconds

Paint Removal of Airplane & Water Jet Application

  • Xue, Sheng-Xiong;Chen, Zheng-Wen;Ren, Qi-Le;Su, Ji-Xin;Han, Cai-Hong;Pang, lei
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.3
    • /
    • pp.125-129
    • /
    • 2014
  • The paint removal and recoating are the very important process in airplane maintenance. The traditional technology is to use the chemical way corroding the paint with paint remover. For changing the defects, corrosion & pollution & manual working, of the traditional technology, the physical process which removes the paint of airplane with 250MPa/250kW ultra-high pressure rotary water jetting though the surface cleaner installed on the six axes robot is studied. The paint layer of airplane is very thin and close. The contradiction of water jetting paint removal is to remove the paint layer wholly and not damage the surface of airplane. In order to solve the contradiction, the best working condition must be reached through tests. The paint removal efficiency with ultra-high pressure and move speed of not damaged to the surface. The move speed of this test is about 2m/min, and the paint removal efficiency is about $30{\sim}40m^2/h$, and the paint removal active area is 85-90%. No-repeat and no-omit are the base requests of the robot program. The physical paint removal technology will be applied in airplane maintenance, and will face the safety detection of application permission.

Performance characteristics of simultaneous removal equipment for paint particulate matter and VOCs generated from a spraying paint booth (입자상물질과 VOCs 동시제거 실증장치에서 자동차 페인트 부스 발생 paint aerosol과 VOCs의 동시제거 성능 특성)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.161-168
    • /
    • 2016
  • The purpose of this study is to determine the performance characteristics of the paint particulate and volatile organic compounds(VOCs) simultaneous removal from the spraying paint booth in the laboratory and real site by sticky paint particulate and VOCs simultaneous removal demonstration unit. The sticky paint particulate and VOCs simultaneous removal unit is composed of the horizontal type pleated filter modules and the zig-zag type granular activated carbon packing modules. The test conditions at the laboratory are $50.15g/m^3$ of average paint aerosol concentration and 300 ppm of VOCs concentration which were same as the working conditions of spraying paint booth in the real site. But, the demonstration conditions at the real site are varied according to the working condition of spraying paint booth for the kind of passenger car bodies. The test results at the laboratory obtained that 99% of total particulate collection efficiency at 0.62 m/min of filtration velocity and 84% at 1.77 m/min of filtration velocity. The VOCs removal efficiencies are 97% at $3500hr^{-1}$ of gas hour space velocity and 59% at $10,000hr^{-1}$ of gas hour space velocity. In the real site test, the average removal efficiency of PM10 was measured to be 99.65%, the average removal efficiency of PM2.5 was 99.38%, the average removal efficiency of PM1 was 98.52%, and the average removal efficiency of VOCs was 89%.

Incremental Analysis for Introduction of Advanced Robotic Laser Coating Removal System for Depainting of Fighter Jets (전투기 도장 제거용 로봇형 레이저 코팅 제거 시스템 도입 의사결정을 위한 증분분석)

  • Chang Young Lee;Jong Hun Park
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.8-20
    • /
    • 2022
  • The paint removal of fighter jets is just as important as the painting, because perfect paint removal ensures the quality of the exterior painting on the aircraft. However, the current conditions for paint removal work of the ROKAF's are poor. It is identified that the painting process currently implemented by the ROKAF is not only exposed to harmful compounds such as harmful dust and hexavalent chromium, but also consumes a lot of water. Thus, the introduction of advanced facility is considered. This study compares the fighter jets painting removal process currently applied by the Korean Air Force with the improved laser coating removal process of the US Air Force, and conducts an incremental analysis to perform economic analysis for the introduction of advanced facility. Four scenarios were envisioned on the premise of an increase in the number of fighters in the future, incremental analysis shows that laser coating removal method is advantageous in all scenarios. In addition, it is recommended that paint removal cycle keeps the current 12-year and the outsourcing amount to civilian depot is reduced.

Developent of a new technique removing paint from recycled car-bumper (기계적 방법과 화학적 방법을 혼합한 폐범퍼 도장 제거 기술 개발)

  • Cruz, Heidy;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3298-3303
    • /
    • 2014
  • In order to recycle the waste bumper, techniques removing coated paint on a bumper is crucial. Chemical methods are known to be much more effective in removing the paint compared to physical methods. However, the chemical methods generally use toxic solvents and consequently cause environmental pollution. In this study, we tested a new method which combines the chemical and physical method to reduce the amount of solvent and increase the paint removal efficiency. We found that mechanical stirring increases the paint removal efficiency in soaking stage of solvent. When solid particles as a stress transfer media are incorporated into the solvent and high mechanical stirring is applied, the paint removal efficiency is very high. It was proved that the combined method can accomplish high level of the paint removal efficiency maintaining low amount of solvent consumed.

Removal Methods of Paint Pollutants on the Stone Cultural Heritage using Poultices (습포제를 이용한 석조문화재의 페인트 오염물 제거기법 연구)

  • Lee, Joo-Wan;Ham, Chul-Hee;Kim, Sa-Dug;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.421-430
    • /
    • 2009
  • This research was carried out focusing on the urgent treatment and related studies for paint scribbling on Samjeondobi Monument (Historic Sites No. 101) in 2007. Before the preliminary test, the paint lacquer used on the surface of Samjeondobi Monument was analyzed. The paint lacquer turned out to be the paint lacquer spray composed of $Pb_3O_4$ used for the red pigment in the market. It was proved that the poultice used with the organic solvent was the best way to remove the paint pollutants following the preliminary test for the removal of paint pollutants which was performed with various removal methods by the laser, etc. However, the removing the paint pollutants was found in difficulty in contrast to the preliminary tests because the paint on the spot was hardened so rapidly over time that there was difference from the situation of the laboratory. For that problem, the poultice method with ethylene dichloride of main component from Remover (goods in the market) was the most efficient, therefore the pollutants were removed with the solution of alkyds resin and nitrocellulose and the rest part was removed by the $Laponite^{(R)}$ RD.

  • PDF

An Experimental Study on the NOx Removal Properties of photocatalystic paint (광촉매도료의 NOx제거 특성에 대한 실험 연구)

  • 박준영;김현우;정봉원;최영준;김용현;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1123-1128
    • /
    • 2001
  • In this study, As a plan of essential solution for out-door air pollution, a basic study was carried out to develop a paint with photocatalystic $TiO_{2}$ which can eliminate the $NO_{X}$ from atmosphere. A series of Experiment were carried out according to kind of binder, photocatalyst, light source. Through Experiment of out-door exposure test, the endurance ability and NOx removal efficiency of the specimen were evaluated.

  • PDF

Removal Performance of Sticky Paint Aerosol Control System Generated from Small Scale Car Paint Overspray Booth (소형 자동차 페인트 도장부스에서 발생하는 점착성 paint aerosol 처리장치에서 제거성능)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Sohn, Jong-Ryeul;Park, Young-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2015
  • Small scale paint overspray booths are being operated nationwidely, for repair of passenger car body parts. paint aerosols are emitted from the paint overspray booth in operations. In paint overspray booth operations without ventilation system and air pollutants collection unit, it may land on nearby equipment. In this study a removal of sticky paint aerosol for application of the small-scale overspray paint booth. it's cause the surface of filter bag from generated sticky paint aerosol. To remove adhesion of paint aerosol the agglomerating agents are injected and mixed with sticky paint aerosols prior to reach the filter bag. The paint spray rate was set as $10{\pm}5g/min$ from air-atomized spray guns in the spray booth, injection rate of agglomerating was $10{\pm}5g/min$ in the mixing chamber. The filtration velocity including air pollutants varied from 0.2 m/min to 0.4 m/min. Bag cleaning air pressure was set as $5.0kg_f/min$ for detaching dust cake from surface of filter bag. Bag cleaning interval at the filtration velocity of 0.2 m/min was around 3 times longer than that of the 0.4 m/min. The residual pressure drop maintained highest value at the highest filtration velocity. Fractional efficiency of 99.952%~99.971% was possible to maintain for the particle size of 2.5 microns. Total collection efficiency at the filtration velocity of 0.2 m/min was 99.42%. During this study we could confirm high collection efficiency and long cleaning intervals for the test with filtration velocity of 0.2 m/min indicating an optimal value for the given dimensions of the test unit and test operating conditions.

A Study on the Reduction Process of VOCs Emission from Paint Booth - A Hybrid Process of Biotrickling Filter and Activated Sludge Reactor

  • Lim Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E2
    • /
    • pp.41-48
    • /
    • 2005
  • A novel hybrid system composed of a biotrickling filter and an activated sludge reactor was investigated under the conditions of four different SRTs (sludge retention times). The performance of the hybrid reactor was found to be directly comparable among the four different sludge ages. Discernible differences in the removal performance were observed among four different SRTs of 2, 4, 6, and 8 days. High removal efficiency was achieved by continuous circulation of activated sludge over the immobilized mixture culture, which allowed on pH control, addition of nutrients, and removal of paint VOCs (volatile organic compounds). The results also showed that the removal efficiency for a given pollutant depends on the activity of microorganisms based on the SRT. As the SRT increased gradually from 2 to 8 days, the average removal performance decreased. The highest removal rate was achieved at the SRT of 2 days at which the highest OUR (oxygen uptake rate), $6.1mg-O_2/liter-min$ was measured. Biological activity in the recycle microbes decreased to a much lower level, $3.6mg-O_2/liter-min$ at a SRT of 8 days. It is thus believed that young microorganisms were more active and more efficient for the VOCs removal of low concentrations and high flow rates. The apparent correlation of $R^2=0.996$ between the average removal efficiency and the average OUR at each SRTs suggests that VOCs degradation by young cells significantly affected the overall removal efficiency for the tested SRTs.

Development of the Inorganic Paint Using Clay-Titania Carrier and the Removal Property of Air Pollutant (점토와 광촉매를 이용한 무기도료의 개발과 대기정화성능에 관한 특성 연구)

  • Kim, Wha-Jung;Lee, Jun-Cheol;Chai, Han-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.655-658
    • /
    • 2005
  • In the domestic atmosphere environment, the VOCs and the NOx have a large proportion of the pollutant, and the HCHO is the main environmental pollutant factor within the house. In this study, the inorganic paint which can absorb and remove VOCs, NOx and HCHO is developed by using clay-titania carrier. The basic data to develope eco-friendly inorganic paint is collected with the performance test to remove the VOCs, NOx and HCHO in the condition of the addition of several inorganic materials to the paint, and also the plan to practical use of eco-friendly inorganic paint is studied.

  • PDF

VOC Emissions from Automotive Painting and Their Control: A Review

  • Kim, Byung-R.
    • Environmental Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • During automotive painting, volatile organic compounds (VOCs) associated with the paint solvents are emitted to the atmosphere. Most VOC emissions come from spraying operations via the use of solvent-based paints, as the spraybooth air picks up gaseous solvent compounds and overspray paint materials. The VOCs consist of aromatic and aliphatic hydrocarbons, ketones, esters, alcohols, and glycolethers. Most VOCs (some hydrophilic VOCs are captured and retained in the water.) are captured by an adsorption system and thermally oxidized. In this paper, the processes involved in automotive painting and in VOC control are reviewed. The topics include: painting operations (briefly), the nature of VOCs, VOC-control processes (adsorption, absorption, biological removal, and thermal oxidation) and energy recovery from VOCs using a fuel reformer and a fuel cell, and the beneficial use of paint sludge.