• Title/Summary/Keyword: Paenibacillus sp. ${\beta}-xylosidase$

Search Result 4, Processing Time 0.015 seconds

Regulation of β-xylosidase biosynthesis in Paenibacillus sp. DG-22 (Paenibacillus sp. DG-22에서의 β-xylosidase 생합성 조절)

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.407-411
    • /
    • 2007
  • Regulation of ${\beta}-xylosidase$ synthesis in Paenibacillus sp. DC-22 was studied to optimize the enzyme production. ${\beta}-Xylosidase$ synthesis of the Paenibacillus sp. DG-22 was observed to be regulated by carbon sources present in culture media. The synthesis of ${\beta}-xylosidase$ was induced by xylan and methyl ${\beta}-D-xylopyranoside$ (${\beta}MeXyl$) but slightly repressed by readily metabolizable monosaccharides. ${\beta}MeXyl$ was found to be the best substrate for the induction of ${\beta}$-xylosidase and the most effective induction was obtained at a concentration of 10 mg/ml. ${\beta}-Xylosidase$ production showed a cell growth associated profile with the maximum amount formed during the late exponential phase of growth. The presence of glucose and xylose decreased the level of ${\beta}-xylosidase$ activity indicating that its production was subjected to a form of carbon catabolite repression. SDS-PAGE and zymogram techniques demonstrated the induction by ${\beta}MeXyl$ and revealed the presence of one ${\beta}-xylosidase$ of approximately 80 kDa.

Cloning, Sequencing and Expression of the Gene Encoding a Thermostable β-Xylosidase from Paenibacillus sp. DG-22 (Paenibacillus sp. DG-22로부터 열에 안정한 β-xylosidase를 암호화하는 유전자의 클로닝, 염기서열결정 및 발현)

  • Lee, Tae-Hyeong;Lee, Yong-Eok
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1197-1203
    • /
    • 2007
  • A genomic DNA library of the bacterium Paenibacillus sp. DG-22 was constructed and the ${\beta}-xylosi-dase-positive$ clones were identified using the fluorogenic substrate $4-methylumbelliferyl-{\beta}-D-xylopyr-anoside$ $({\beta}MUX)$. A recombinant plasmid was isolated from the clone and 4.3-kb inserted DNA was sequenced. The ${\beta}-xylosidase$ gene (xylA) was comprised of a 2,106 bp open reading frame (ORF) en-coding 701 amino acids with a molecular weight of 78,710 dalton and a pI of 5.0. The deduced amino acid sequence of the xylA gene product had significant similarity with ${\beta}-xylosidases$ classified into family 52 of glycosyl hydrolases. The xylA gene was subcloned into the pQE60 expression vector to fuse with six histidine-tag. The recombinant ${\beta}-xylosidase$ $(XylA-H_6)$ was purified to homogeneity by heat-treatment and immobilized metal affinity chromatography. The pH and temperature optima of the $XylA-H_6$ enzyme were pH 5.5-6.0 and $60^{\circ}C$, respectively.

Purification and Characterization of β-Xylosidase from Paenibacillus sp. DG-22 (Paenibacillus sp. DG-22로부터 β-xylosidase의 정제 및 특성분석)

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1341-1346
    • /
    • 2007
  • An intracellular ${\beta}-xylosidase$ from Paenibacillus sp. DG-22 was purified to homogeneity by ion-exchange, hydrophobic interaction and gel-filtration chromatography. The molecular weight of the enzyme was measured to be 156,000 by gel filtration and 80,000 by SDS-PAGE, indicating that the enzyme consisted of two identical subunits. The purified enzyme exhibited maximum activity at $65^{\circ}C$ and pH 5.5. It retained 89% of its initial activity up to 60 min at $60^{\circ}C$ and had a half-life of 25 min at $65^{\circ}C$. The enzyme was highly specific for pNPX as the substrate. It showed little or no activity against other p-nitrophenyl glycosides and xylans. The $K_m\;and\;V_{max}$ for pNPX was 0.53 mM and 3.18 U/mg protein, respectively. The ${\beta}-xylosidase$ was strongly inhibited by $Ag^+,\;Fe^{2+},\;Hg^{2+}\;and\;Zn^{2+}$ and slightly activated by DTT. The hydrolysis product from xylobiose, xylotriose, and xylotetraose was xylose.

Optimization of Xylanase Production from Paenibacillus sp. DG-22 (Paenibacillus sp. DG-22로부터 xylanase 생산의 최적화)

  • Lee, Yong-Eok
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.618-625
    • /
    • 2003
  • Investigations were carried out to optimize the culture conditions for the production of xylanase by Paenibacillus sp. DG-22, a moderately thermophilic bacterium isolated from timber yard soil. Xylanase production showed a cell growth associated profile. Xylanase activity was found only in the culture supernatant, while $\beta-xylosidase$ activity was mainly associated with the cells. The formation of xylanase activity was induced by xylan and repressed by glucose and xylose. The production profile of xylanase was examined with various commercial xylan and maximum yield was achieved with 0.1∼ 0.5% birchwood xylan. Among various nitrogen sources tested, yeast extract was optimal for the production of xylanase. The xylanase activity was inhibited by $Co^{2+},\; Cu^{2+},\; Fe^{3+},\; Hg^{2+}\;$ and$\;Mn^{2+}$ ions while $Ca^{2+},\; Mg^{2+},\; Ni^{2+},\; Zn^{2+}$ions and DTT stimulated xylanase activity Mercury (II) ion at 5 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher xylooligo-saccharides, indicating that the enzyme was an endoxylanase.