• Title/Summary/Keyword: Paenibacillus

Search Result 255, Processing Time 0.026 seconds

Appropriate Soil Heat Treatment Promotes Growth and Disease Suppression of Panax notoginseng by Interfering with the Bacterial Community

  • Li, Ying-Bin;Zhang, Zhi-Ping;Yuan, Ye;Huang, Hui-Chuan;Mei, Xin-Yue;Du, Fen;Yang, Min;Liu, Yi-Xiang;Zhu, Shu-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.294-301
    • /
    • 2022
  • In our greenhouse experiment, soil heat treatment groups (50, 80, and 121℃) significantly promoted growth and disease suppression of Panax notoginseng in consecutively cultivated soil (CCS) samples (p < 0.01), and 80℃ worked better than 50℃ and 121℃ (p < 0.01). Furthermore, we found that heat treatment at 80℃ changes the microbial diversity in CCS, and the inhibition ratios of culturable microorganisms, such as fungi and actinomycetes, were nearly 100%. However, the heat-tolerant bacterial community was preserved. The 16S rRNA gene and internal transcribed spacer (ITS) sequencing analyses indicated that the soil heat treatment had a greater effect on the Chao1 index and Shannon's diversity index of bacteria than fungi, and the relative abundances of Firmicutes and Proteobacteria were significantly higher than without heating (80 and 121℃, p < 0.05). Soil probiotic bacteria, such as Bacillus (67%), Sporosarcina (9%), Paenibacillus (6%), Paenisporosarcina (6%), and Cohnella (4%), remained in the soil after the 80℃ and 121℃ heat treatments. Although steam increased the relative abundances of most of the heat-tolerant microbes before sowing, richness and diversity gradually recovered to the level of CCS, regardless of fungi or bacteria, after replanting. Thus, we added heat-tolerant microbes (such as Bacillus) after steaming, which reduced the relative abundance of pathogens, recruited antagonistic bacteria, and provided a long-term protective effect compared to the steaming and Bacillus alone (p < 0.05). Taken together, the current study provides novel insight into sustainable agriculture in a consecutively cultivated system.

Analysis of Microbial Community Structure in Soil and Crop Root System II. Analysis of soil microbial community structure in different soil Environmental conditions by MIDI and DNA analyses (토양과 작물근계의 미생물군집 구조 해석 II. MIDI 및 DNA 분석에 의한 토양환경별 미생물 군집 해석)

  • Ryu, Jin-Chang;Kwon, Soon-Wo;Kim, Jong-Shik;Suh, Jang-Sun;Jung, Beung-Gan;Choi, Sun-Shik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.118-126
    • /
    • 2002
  • To evaluate the correlations of microbial populations with soil healthiness and crop production and establish the criteria for microbial population of soil types. We analyzed the microbial community structure of 13 soils which were different in physical and chemical properties and cultivation methods. According to the analysis of microbial population suing the dilution plate method, the large differences of the microbial population structures among soil types were shown: aerobic bacteria $2-27{\times}10^6$, fluorescent Pseudomonas $1-1,364{\times}10^5$, Gram negative bacteria $1-126{\times}10^4$, and mesophilic Bacillus $1-110{\times}10^5$. The density of Gram negative bacteria was highest on red pepper cultivating soils (sample no. 4 and 6) of Umsung and Gesan, Chungbuk, and the density of the fluorescent Pseudomonas was highest on greenhouse soil (sample no. 7) of Jinju, Kyungnam. The crop productivity of three soils was high as compared with those of other soils. It was supposed that the density of fluorescent Pseudomonas and mesophilic Bacillus were correlated with the incresed crop production. By MIDI analysis, 579 strains isolated from 13 soils composed of a variety of microbes including 102 isolates of Agrobacterium, 112 isolates of Bacillus, 32 isolates of Pseudomonas, 44 isolates of Kocuria, and 34 isolates of Pseudomonas. Among the 624 isolates of Gram negative bacteria, Pseudomonas including P. putida and p. fluorescens occupied the highest density (51%), and Stenotrophomonas maltophilia and Burkholderia cepacia also appeared at high density. From RAPD analysis, the fluorescent Pseudomonas strains isolated from 13 soil types showed a high level of strain diversities and were grouped into 2 - 14 patterns according to soil types. Many of unknown bacteria were recovered from the paddy soil, and needed to be further characterized on the molecular basis.

Elucidation of Environment Factors Affecting the Differences in the Half-Life of the Insecticide Cyfluthrin in Soil between Field and Laboratory Tests (포장과 실내실험에서 살충제 Cyfluthrin의 토양 중 반감기 차이에 미치는 환경요인 구명)

  • Lim, Bang-Hyun;Lim, Yo-Sup;Choi, Yong-Hwa;Han, Seong-Soo
    • Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.291-297
    • /
    • 2000
  • This study was conducted to find out the environmental factors affecting the differences in the half-life of the insecticide cyfluthrin in soil between field and laboratory tests carried out in 1998. Degradation and leaching of cyfluthrin in soil were examined under various environmental conditions that were considered to affect the residuality. Cyfluthrin was degraded 1.9 times faster in non-sterilized soil than in sterilized soil and 1.2 times at $25^{\circ}C$ than at $15^{\circ}C$. The half-lives of cyfluthrin were 61.4 days under the dark condition and 4.5 days under sunlight, and those were 11.8 days under the open condition and 23.8 days under the closed condition. The half-lives of the authentic compound and the commercial product of cyfluthrin were 15 and 1 day in the field test and 26 and 3 days in the laboratory test, respectively. Cyfluthrin was rapidly degraded with an increase in soil moisture content and decomposed faster in the alkaline solution of pH 12 than in the acidic solution of pH 3, but the half-life of cyfluthrin did not make any difference between pH 6.4 of the field test soil and pH 5.6 of the laboratory test soil. Cyfluthrin was immobile in soil from the results that $81{\sim}94%$ of the initial amount remained in the $0{\sim}2\;cm$ layer of the soil column regardless of the amount and time of rainfall after the chemical treatments. From viewing the abovementioned results, soil moisture content, sunlight and formulation type affected greatly soil microbes and volatilization affected slightly, and temperature, pH and rainfall did not affect the big difference in the half-life of cyfluthrin in soil between the field and laboratory tests in the year of 1998.

  • PDF

Physicochemical Properties and Microbial Analysis of Korean Solar Salt and Flower of Salt (한국산 꽃소금과 천일염의 이화학적 특성 및 미생물 분석)

  • Lee, Hye Mi;Lee, Woo Kyoung;Jin, Jung Hyun;Kim, In Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1115-1124
    • /
    • 2013
  • The present study was conducted to ensure the diversity of domestic solar salt by analyzing the composition and microbiological characteristics of solar salt (from Docho island: DS) and the flower of salt produced in different Korean salt flats (Sinui island: SF, Bigum island: BF, and Docho island: DF). The analyses showed that the moisture content of the three types of flower of salt and solar salt ranged from 10.54~13.82% and NaCl content ranged from 78.81~84.61%. The mineral content of those salts ranged from 3.57~5.51%. The content of insoluble matter in these salts was $0.01{\pm}0.00{\sim}0.05{\pm}0.00%$. The sand content of these salts was $0.01{\pm}0.01{\sim}0.03{\pm}0.01%$. By Hunter's color value analysis, the color of the flower of salt was brighter and whiter than solar salt. The salinity of the flower of salt was a little higher than solar salt as well. The magnesium and potassium ion content of DF was $9,886.72{\pm}104.78mg/kg$ and $2,975.23{\pm}79.73mg/kg$, respectively, which was lower than the content in SF, BF, and DS. The heavy metal content of all salts was acceptable under the Korean Food Sanitation Law. The flower of salt was confirmed to be sweeter and preferable to solar salt. More than 80% of the solar salt crystals were 2~3 mm in size, whereas crystals from the flower of salt were 0.5~2 mm in size. The bacterial diversity of DF and DS were investigated by culture and denaturing gradient gel electrophoresis (DGGE) methods. The number of cultured bacteria in flower of salt was approximately three times more than solar salt. By DGGE analysis, major microbes of DF were Maritimibacter sp., Cupriavidus sp., and unculturable bacteria, and those of DS were Cupriavidus sp., Dunalidella salina and unculturable bacteria. The results of DGGE analysis showed that major microorganisms in solar salts were composed of unidentified and unculturable bacteria and only a few microorganisms were culturable.

Optimization for the Process of Ethanol of Persimmon Leaf(Diospyros kaki L. folium) using Response Surface Methodology (반응표면분석법을 이용한 감잎(Diospyros kaki L. folium) 에탄올 추출물의 최적화)

  • Bae, Du-Kyung;Choi, Hee-Jin;Son, Jun-Ho;Park, Mu-Hee;Bae, Jong-Ho;An, Bong-Jeon;Bae, Man-Jong;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.218-224
    • /
    • 2000
  • The efforts were made to optimite ethanol extraction from persimmon leaf with the time of extraction$(1.5{\sim}2.5\;hrs)$, the temperature of extraction$(70{\sim}90^{\circ}C)$, and the concentration of ethanol$(0{\sim}40%)$ as three primary variables together with several functional characteristics of persimmon leaf as reaction variables. The conditions of extraction was best fitted by using response surface methodology through the center synthesis plan, and the optimal conditions of extraction were established. The contents of soluble solid and soluble tannin went up as the concentration of ethanol went up and the temperature of extraction went down, and the turbidity went down as the concentration of ethanol went down. Electron donation ability was hardly affected by the extraction temperature and had the tendency to go up as the concentration of ethanol went up. The inhibitory activity of xanthine oxidase(XOase) had the tendency to go up as both the concentration of ethanol and the temperature of extraction went up. The inhibitory activity of angiotensin converting enzyme(ACE), the significance of which still was not recognized, showed the maximum when the concentration of ethanol was 27%. In result, the optimal conditions of extraction was the extraction time of two hours, the extraction temperature of $75{\sim}81^{\circ}C$, and the ethanol concentration of $33{\sim}35%$.

  • PDF