• Title/Summary/Keyword: Packing Structure

Search Result 218, Processing Time 0.03 seconds

Experimental & Numerical Result of the filling of Micro Structures in Injection Molding (미세 구조물의 충전에 관한 실험 및 수치해석)

  • Lee J.G.;Lee B.K;Kwon T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.111-114
    • /
    • 2005
  • Experimental and numerical studies were carried out in order to investigate the processability and the transcriptability of the injection molding of micro structures. For this purpose, we designed a mold insert having micro rib patterns on a relatively thick base part. Mold insert has a base of 2mm thickness, and has nine micro ribs on that base plate. Width and height of the rib are $300{\mu}m\;and\;1200{\mu}m$, respectively. We found a phenomenon similar to 'race tracking', due to 'hesitation' in the micro ribs. As the melt flows, it starts to cool down and melt front located in the ribs near the gate cannot penetrate further because the flow resistance is large in that almost frozen portion. When the base is totally filled, the melt front away from the gate is not frozen yet. Therefore, it flows back to the gate direction through the ribs. Consequently, transcriptability of the rib far from the gate is better. We also verified this phenomenon via numerical simulation. We further investigated the effects of processing conditions, such as flow rate, packing time, packing pressure, wall temperature and melt temperature, on the transcriptability. The most dominant factor that affects the flow pattern and the transcriptability of the micro rib is flow rate. High flow rate and high melt temperature enhance the transcriptability of micro rib structure. High packing time and high packing pressure result in insignificant dimensional variations of the rib. Numerical simulation also confirms that low flow rate causes a short shot of micro ribs and high wall temperature helps the filling of the micro ribs.

  • PDF

Permeability Characteristics of Polymerized Vesicles(II) (고분자화된 Vesicles의 투과 특성(II))

  • Bae, Duck-Hwan;Kim, Kong-Soo;Shin, Jae-Sup
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.335-340
    • /
    • 1992
  • Polymerized vesicles were formed from monomeric surfactants and permeability of polymerized vesicles were compared with that of monomeric analogs. The results showed that crosslinking get the permeability of vesicle decrease. And when the vesicle was polymerized at both inside and outside of vesicle, the vesicle got the lower permeability. Packing structure in the vesicle which is dependent upon the molecular structure of alkyl group in surfactant had an effect on permeability of vesicle.

  • PDF

Pecking Order Theory and Korean Family Firms: Effect of Ownership and Governance Characteristics (한국기업의 가족경영과 자본조달우선순위: 소유·지배구조 특성의 영향분석)

  • Jung, Mingue;Kim, Dongwook;Kim, Byounggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.518-526
    • /
    • 2017
  • This study analyzed the impact of family firms and their characteristics on how they use debts to analyze the decision-making process of Korean family firms. For analysis, we classified the characteristics of family firms into three categories, through the influence of the relationship between the lack of funds and net debt issuance, which was confirmed as the 'packing order theory' of family firms. There was a total of 4,503 enterprises in the Korean Exchange (KRX). The period of analysis was 10 years, between 2004 and 2014. To summarize, Shyam-Sunder and Myers (1999) validated the packing order theory by presenting a model of family businesses that showed greater applicable to higher packing order theory than a model of non-family businesses. Moreover, the results also confirmed the application of the packing order theory by the family stronger corporate governance and ownership structure. The ownership and governance characteristics of the ruling family has also shown the applicability of higher packing order theory.

Effect of Nitrogen Gas Packing and ${\gamma}-Oryzanol$ Treatment on the Shelf Life of Yukwa(Korean Traditional Snack) (질소치환포장 및 ${\gamma}-Oryzanol$ 첨가가 유과의 저장성에 미치는 영향)

  • Park, Yoon-Jung;Chun, Hyang-Sook;Kim, Sang-Sook;Lee, Jong-Mee;Kim, Kyu-Heun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.317-322
    • /
    • 2000
  • This study examined the effect of nitrogen$(N_2)$ gas packing and ${\gamma}-oryzanol$ treatment on the shelf life of Yukwa(Korean traditional snack). Yukwa were stored with $N_2$ gas packing(AN), $N_2$ gas packing with ${\gamma}-oryzanol$ treatment(ANA), and PE film packing with air(PE) for 20 days at $60^{\circ}C$. They were evaluated by POV, AV, conjugated diene, hexanal, color and sensory characteristics. The POV, AV and conjugated diene content increased abruptly in PE and AN, but increased slowly in ANA with prolonged storage. Higher sensory scores for Yukwa were found in ANA as compared to those in PE and AN. Hexanal content, yellowness and redness in AN were higher than those in ANA and PE. The moisture content, which is supposed to be related with browning of Yukwa, was 3 times higher in AN than that in PE. Oxygen content of each Yukwa pack, even in $N_2$ gas packing, increased remarkably as storage period increased because their highly porous, fragile and syrup-coated structure resulted in incomplete degassing before $N_2$ gas was flushed into package. Consequently, $N_2$ gas packing was inefficient, but $N_2$ gas packing combined with antioxidant(such as ${\gamma}-oryzanol$) treatment was effective for the extension of shelf life of Yukwa.

  • PDF

The Critical Pigment Volume Concentration Concept for Paper Coatings: II. Later-Bound Clay; Ground Calcium Carbonate, and Clay- carbonate Pigment Coatings

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.18-38
    • /
    • 2002
  • A previous study on the model coatings based on latex-bound plastic pigment coatings (1) has been extended to latex-bound No. 1 clay, ultra-fine ground calcium carbonate (UFGCC), and clay-carbonate pigment mixture coatings, which are being widely used in the paper industry. The latex binder used was a good film-forming, monodisperse S/B latex or 0.15$\mu\textrm{m}$. No. 1 clay was representative of plate-like pigment particles, whereas UFGCC was of somewhat rounded rhombohedral pigment particlel. Both of them had negatively skewed triangular particle size distributions having the mean particle suet of 0.7${\mu}{\textrm}{m}$ and 0.6$\mu\textrm{m}$, respectively. Their packing volumes were found to be 62.5% and 657%, respectively. while their critical pigment volume concentrations (CPVC's) were determined to be 52.7% and 50.5% ( average of 45% caused by the incompatibility and 55.9% extrapolated) by coating porosity, respectively. Each pigment/latex coating system has shown its unique relationship between coating properties and pigment concentrations, especially above its CPVC. Notably, the clay/latex coating system hat shown higher coating porosity than the UFGCC/latex system at high pigment concentrations above their respective CPVC's. It was also found that their coating porosity and gloss were inter-related to each other above the CPVC's, as predicted by the theory. More interestingly, the blends of these two pigments have shown unique rheological and coating properties which may explain why such pigment blends are widely used in the industry. These findings have suggested that the unique structure of clay coatings and the unique high-shear rheology of ground calcium carbonate coatings can be judiciously combined to achieve superior coatings. Importantly, the low-shear viscosity of the blends was indicative of their unique packing and coating structure, whereas their high-shear rheology was represented by a common mixing rule, i.e., a viscosity-averaging. Transmission and scanning electron and atomic force microscopes were used to probe the state of pigment / latex dispersions, coating surfaces, freeze fractured coating cross-sections, and coating surface topography. These microscopic studies complemented the above observations. In addition, the ratio, R, of CPVC/(Pigment Packing Volume) has been proposed as a measure of the binder efficiency for a given pigment or pigment mixtures or as a measure of binder-pigment interactions. Also, a mathematical model has been proposed to estimate the packing volumes of clay and ground calcium carbonate pigments with their respective particle size distributions. As well known in the particle packing, the narrower the particle size distributions, the lower the packing volumes and the greater the coating porosity, regardless of particle shapes.

A Study on the Fluid Interception Valve According to Non Rubbing Top and Bottom operation Shaft (무마찰 상하작동 축에 의한 유체차단 밸브에 관한 연구)

  • Cho, Myung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.4
    • /
    • pp.27-32
    • /
    • 2005
  • Liquid valve is divided into cylinder and liquid part or composed of a single body structure. It becomes a connected structure to cylinder head after inserting stainless(STS) shaft to Teflon packing. In injecting and intercepting fluid, working efficiency becomes low because of the top and bottom round trip operation the friction between Teflon packing and STS shaft fluid leakage, decline of working environment, and each part replacement. And so target value is unattainable in productivity liquid valve design, quality, and structure change are studied. In this paper, designed to solve the existing problems basically, to prevent friction of Piston by developing diaphragm linked with piston, to satisfy long life, and to provide the prevention of leakage. The objective of the study is also to prevent remains fluid at nozzle tip after dispensing fluid, and bell close with the suction function in piston retreating.

Structure of Cholesteryl Pentyl Carbonate (Cholesteryl Pentyl Carbonate의 결정 및 분자구조)

  • Seo, Hye Ran;Park, Yeong Ja;B. M. Craven
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.29-36
    • /
    • 1990
  • Cholesteryl pentyl carbonate $(C_{33}H_{56}O_3)$ is monoclinic, space group P21, with a = 12.484(3), b = 9.043(3), c = 14.053(3)$\AA$, ${\beta} = 94.12(2)^{\circ}$ and z = 2. The intensity data were measured for the 2969 reflections within sin $\theta/\lambda = 0.52 {\AA}^{-1}$, using an automatic four--circle diffractometer and graphite monochromated Mo-K$\alpha$ radiation. The atomic coordinates from cholesteryl octanoate were used in an initial trial structure and the structure was refined by full-matrix least squares methods. The final R-factor was 0.12 for 1164 observed reflections. The pentyl group has shortened bond lengths due to the high thermal vibrations in this region. Adjacent molecules are related by $2_1$ screw axis so that they are arranged in an antiparallel array, corresponding to the Monolayer Type II packing mode. There are close packings of cholesteryl groups within the monolayers. This packing type is similar to those of cholesteryl hexanoate, octanoate, hexyl carbonate and oleate.

  • PDF

On the usefulness of discrete element computer modeling of particle packing for material characterization in concrete technology

  • Stroeven, P.;Hu, J.;Stroeven, M.
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.133-153
    • /
    • 2009
  • Discrete element modeling (DEM) in concrete technology is concerned with design and use of models that constitute a schematization of reality with operational potentials. This paper discusses the material science principles governing the design of DEM systems and evaluates the consequences for their operational potentials. It surveys the two families in physical discrete element modeling in concrete technology, only touching upon probabilistic DEM concepts as alternatives. Many common DEM systems are based on random sequential addition (RSA) procedures; their operational potentials are limited to low configuration-sensitivity features of material structure, underlying material performance characteristics of low structure-sensitivity. The second family of DEM systems employs concurrent algorithms, involving particle interaction mechanisms. Static and dynamic solutions are realized to solve particle overlap. This second family offers a far more realistic schematization of reality as to particle configuration. The operational potentials of this family involve valid approaches to structure-sensitive mechanical or durability properties. Illustrative 2D examples of fresh cement particle packing and pore formation during maturation are elaborated to demonstrate this. Mainstream fields of present day and expected application of DEM are sketched. Violation of the scientific knowledge of to day underlying these operational potentials will give rise to unreliable solutions.

Effects of Organosilicate Structure on Melt Intercalation of Thermoplastic Polymers (유기화제 구조가 열가소성 나노복합체의 제조에 미치는 영향)

  • 어태식;김성수;송기국;김준경
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.794-801
    • /
    • 2000
  • The effect of chain length and packing density of intercalated surfactants, annealing temperature, and annealing time on static melt intercalation of thermoplastic polymers was examined using x-ray and FTIR spectroscopy. Although melt intercalation of polymers was not successful when alkyl chains in organosilicates form a lateral monolayer structure, the type and structure of surfactants could not much affect final interlayer distances of most polymer/silicate hybrids. As annealing time increases, interlayer distance in organosilicates increases while the dispersity of the spacing between silicate layers decreases. However, the dispersity of interlayer spacing as well as interlayer distance in organosilicates increase with annealing temperature.

  • PDF

Non-invasive Skin Barrier Lipid Packing Analysis Using FT-IR and Study of Cosmetic Formulation for Damaged Barrier (FT-IR을 활용한 비 침습적 피부 장벽 지질 패킹 분석과 손상된 장벽의 개선 제형 연구)

  • Kim, Hye Jin;Kim, Sunyoung;Lee, Seol-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.3
    • /
    • pp.307-317
    • /
    • 2020
  • The barrier structure of the skin's epidermis is a key structure to prevent the loss of water inside the body and the invasion of foreign substances, and is composed of keratinocytes and intercellular lipids. At this time, the intercellular lipids of the skin barrier has the strongest structure when packed in an orthorhombic structure. However, it is damaged by various external causes and changes to a hexagonal structure. This change in physical structure can be analyzed non-invasively by analyzing the signal of the CH2-CH2 scissoring band of lipids using FT-IR. In this study, SDS was treated on porcine skin to construct a skin barrier damage model, and the degree of change in packing structure was quantified by analyzing FT-IR signals. We then judged whether the barrier of the damage model was recovered according to the treatment of the cosmetic formulation. From these results, an indirect method of measuring the water evaporation of the skin barrier to date can be supplemented. In addition, physical changes in the structure of the skin barrier can be utilized in a direct and efficient manner to identify the function and verify the formulation of various materials.