• Title/Summary/Keyword: Packet Analysis

Search Result 970, Processing Time 0.021 seconds

Analysis of Bursty Packet Loss Characteristic According to Transmission Rate for Wi-Fi Broadcast (Wi-Fi 방송 서비스를 위한 방송 패킷 전송률에 따른 버스트 손실 특성 분석)

  • Kim, Se-Mi;Kim, Dong-Hyun;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.553-563
    • /
    • 2013
  • When the IEEE 802.11 wireless LAN-based broadcasting services, we use broadcast packets to broadcast multimedia contents to a large number of users using limited wireless resources. However, broadcast transmission is difficult to recover the loss packets compared with unicast transmission. Therefore, analysis of packet loss characteristics is required to perform efficient packet recovery. The packet loss in wireless transmissions is often bursty with high loss data rate. Even if loss patterns have the same average packet loss, they are different in the recovery rate of random loss and burst loss depending on the nature. Therefore, the analysis and research of the nature of the loss are needed to recover loss packets considering bursty characteristics. In this paper, we experimented Wi-Fi broadcast transmission according to transmission rate and analyzed bursty characteristics of loss patterns using 4-state markov model.

Impact of Trust-based Security Association and Mobility on the Delay Metric in MANET

  • Nguyen, Dang Quan;Toulgoat, Mylene;Lamont, Louise
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2016
  • Trust models in the literature of MANETs commonly assume that packets have different security requirements. Before a node forwards a packet, if the recipient's trust level does not meet the packet's requirement level, then the recipient must perform certain security association procedures, such as re-authentication. We present in this paper an analysis of the epidemic broadcast delay in such context. The network, mobility and trust models presented in this paper are quite generic and allow us to obtain the delay component induced only by the security associations along a path. Numerical results obtained by simulations also confirm the accuracy of the analysis. In particular, we can observe from both simulation's and analysis results that, for large and sparsely connected networks, the delay caused by security associations is very small compared to the total delay of a packet. This also means that parameters like network density and nodes' velocity, rather than any trust model parameter, have more impact on the overall delay.

Throughput Analysis of DS/CDMA System Applying Packet Combining Scheme over Nakagami Fading Channel (나카가미 페이딩 채널에서 패킷결합기법을 적용한 DS/CDMA 시스템의 전송율 분석)

  • 황재문;박진수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • In this paper, we analyzed the throughput of DS/CDMA system applying packet combining scheme combined with Type- I Hybrid ARQ scheme over AWGN channel and Nakagami fading channel with RAKE receiver. As the parameter for analysis, we used number of combined packet(L), number of diversity branch$({L_c})$, fading index(m), and length of packet(N), and used CRC-12 error detection code and (2,1,3) convolutional code. As a results, we found that throughput of system over Nakagami fading channel with RAKE receiver was superior to throughput over AWGN channel, and throughput of system decreases rapidly as channel degrades when number of combined packet(L) was increased. However throughput of system with the combining scheme was achieved even at low ${E_b}/{N_o}$. Also, we found that throughput of system was increased when fading index(m) and number of diversity branch$({L_c})$ were increased, but it was decreased when number of user(K) and length of packet(N) were increased.

A Mathematical Model for Asymmetrical/Heterogeneous Traffic Management in TD-CDMA System (시분할-코드분할 다중 접속 시스템에서 비대칭/불균질 트래픽 처리에 대한 수학적 모델)

  • Shin Jung chae;Lee Yutae;Kim Jeong ho;Cho Ho shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.259-270
    • /
    • 2005
  • This paper proposes a mathematical model to analyze call-and packet-level performance of the TD-CDMA/TDD system which could serve a flexible radio resource management against multi-type heterogeneous and asymmetrical traffic conditions. On call-level analysis, the mathematical model based on queueing theory performs multi-dimensional operations using random vectors or matrices to consider multiple types of traffic and also deal with asymmetrical up- and down-direction transmissions separately. Employing the mathematical model, we obtain rail blocking probability for each type of traffic and also the optimum switching-point with the smallest call flocking probability. And on packet-level analysis, employing a non-prioritized queueing scheme between circuit and packet calls, we solve 2-dimensional random vector problem composed of the queue length for packets and the number of circuit calls being served. Finally, packet-level performance is analyzed in terms of the packet loss probability and the buffer size required under mixed-traffic conditions of multiple types of circuit and packet calls.

Analysis of Distributed DDQ for QoS Router

  • Kim, Ki-Cheon
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.31-44
    • /
    • 2006
  • In a packet switching network, congestion is unavoidable and affects the quality of real-time traffic with such problems as delay and packet loss. Packet fair queuing (PFQ) algorithms are well-known solutions for quality-of-service (QoS) guarantee by packet scheduling. Our approach is different from previous algorithms in that it uses hardware time achieved by sampling a counter triggered by a periodic clock signal. This clock signal can be provided to all the modules of a routing system to get synchronization. In this architecture, a variant of the PFQ algorithm, called digitized delay queuing (DDQ), can be distributed on many line interface modules. We derive the delay bounds in a single processor system and in a distributed architecture. The definition of traffic contribution improves the simplicity of the mathematical models. The effect of different time between modules in a distributed architecture is the key idea for understanding the delay behavior of a routing system. The number of bins required for the DDQ algorithm is also derived to make the system configuration clear. The analytical models developed in this paper form the basis of improvement and application to a combined input and output queuing (CIOQ) router architecture for a higher speed QoS network.

  • PDF

Packet Size Optimization for Improving the Energy Efficiency in Body Sensor Networks

  • Domingo, Mari Carmen
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.299-309
    • /
    • 2011
  • Energy consumption is a key issue in body sensor networks (BSNs) since energy-constrained sensors monitor the vital signs of human beings in healthcare applications. In this paper, packet size optimization for BSNs has been analyzed to improve the efficiency of energy consumption. Existing studies on packet size optimization in wireless sensor networks cannot be applied to BSNs because the different operational characteristics of nodes and the channel effects of in-body and on-body propagation cannot be captured. In this paper, automatic repeat request (ARQ), forward error correction (FEC) block codes, and FEC convolutional codes have been analyzed regarding their energy efficiency. The hop-length extension technique has been applied to improve this metric with FEC block codes. The theoretical analysis and the numerical evaluations reveal that exploiting FEC schemes improves the energy efficiency, increases the optimal payload packet size, and extends the hop length for all scenarios for in-body and on-body propagation.

A Model to Investigate the Security Challenges and Vulnerabilities of Cloud Computing Services in Wireless Networks

  • Desta Dana Data
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.107-114
    • /
    • 2023
  • The study provides the identification of vulnerabilities in the security issues by Wireless Network. To achieve it the research focus on packet flow analysis, end to end data communication, and the security challenges (Cybercrime, insider threat, attackers, hactivist, malware and Ransomware). To solve this I have used the systematic literature review mechanisms and demonstrative tool namely Wireshark network analyzer. The practical demonstration identifies the packet flow, packet length time, data flow statistics, end- to- end packet flow, reached and lost packets in the network and input/output packet statics graphs. Then, I have developed the proposed model that used to secure the Wireless network solution and prevention vulnerabilities of the network security challenges. And applying the model that used to investigate the security challenges and vulnerabilities of cloud computing services is used to fulfill the network security goals in Wireless network. Finally the research provides the model that investigate the security challenges and vulnerabilities of cloud computing services in wireless networks

Modeling and Analysis of Wireless Lan Traffic (무선 랜 트래픽의 분석과 모델링)

  • Yamkhin, Dashdorj;Lee, Seong-Jin;Won, You-Jip
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.667-680
    • /
    • 2008
  • In this work, we present the results of our empirical study on 802.11 wireless LAN network traffic. We collect the packet trace from existing campus wireless LAN infra-structure. We analyzed four different data sets: aggregate traffic, upstream traffic, downstream traffic, tcp only packet trace from aggregate traffic. We analyze the time series aspect of underlying traffic (byte count process and packet count process), marginal distribution of time series, and packet size distribution. We found that in all four data sets there exist long-range dependent property in byte count and packet count process. Inter-arrival distribution is well fitted with Pareto distribution. Upstream traffic, i.e. from the user to Internet, exhibits significant difference in its packet size distribution from the rests. Average packet size of upstream traffic is 151.7 byte while average packet size of the rest of the data sets are all greater than 260 bytes. Packets with full data payloads constitutes 3% and 10% in upstream traffic and the downstream traffic, respectively. Despite the significant difference in packet size distribution, all four data sets have similar Hurst values. The Hurst alone does not properly explain the stochastic characteristics of the underlying traffic. We model the underlying traffic using fractional-ARIMA (FARIMA) and fractional Gaussian Noise (FGN). While the fractional Gaussian Noise based method is computationally more efficient, FARIMA exhibits superior performance in accurately modeling the underlying traffic.

Face Region Detection and Verification using both WPA and Spatially Restricted Statistic (공간 제약 특성과 WPA를 이용한 얼굴 영역 검출 및 검증 방법)

  • Song, Ho-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.542-548
    • /
    • 2006
  • In this paper, we propose a face region detection/verification method using wavelet packet analysis and structural statistic for frontal human color image. The method extracts skin color lesions from input images, first. and then applies spatial restrictive conditions to the region, and determines whether the region is face candidate region or not. In second step, we find eye region in the face candidate region using structural statistic for standard korean faces. And in last step, the face region is verified via wavelet packet analysis if the face torture were satisfied to normal texture conditions.

Efficient Load Balancing Algorithms for a Resilient Packet Ring

  • Cho, Kwang-Soo;Joo, Un-Gi;Lee, Heyung-Sub;Kim, Bong-Tae;Lee, Won-Don
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.110-113
    • /
    • 2005
  • The resilient packet ring (RPR) is a data optimized ring network, where one of the key issues is on load balancing for competing streams of elastic traffic. This paper suggests three efficient traffic loading algorithms on the RPR. For the algorithms, we evaluate their efficiency via analysis or simulation.

  • PDF