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ABSTRACT⎯The resilient packet ring (RPR) is a data 
optimized ring network, where one of the key issues is on load 
balancing for competing streams of elastic traffic. This paper 
suggests three efficient traffic loading algorithms on the RPR. 
For the algorithms, we evaluate their efficiency via analysis or 
simulation. 

Keywords⎯Resilient packet ring (RPR), loading problem,  
counter-rotating ring, routing, load balancing. 

I. Introduction 
This paper concerns load balancing problems on a resilient 

packet ring (RPR), where the RPR is offered by IEEE 802.17 
[1]. The RPR is well suited for a metropolitan area network 
with two counter-rotating rings where multiple stations share 
the bandwidth. The ring loading (load balancing) problems can 
be classified into two kinds: ones with and ones without 
demand splitting. Split loading allows the splitting of a demand 
into two portions to be carried out in two directions, while an 
unsplit loading is one in which each demand must be entirely 
carried out in either the clockwise or counter-clockwise 
direction. Since the cost of the ring increases with its capacity, it 
is desirable to route the demands so as to minimize this 
maximum load. The min-max problem is stated as follows: 
given a set of nodes on a ring network and a set of demands 
between pairs of nodes, how to allocate bandwidths to each 
traffic demand so that the maximum of the loads on the links in 
the network is as small as possible [2], [3]. 
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For research on the unsplit min-max problem, Cosares and 
Saniee [4] and Dell’Amico et al. [5] studied the problems on 
bi-directional synchronous optical network (SONET) rings. 
For the split loading problem, Myung et al. [6] and Wan and 
Yang [7] considered the min-max loading problem on the 
SONET rings. Most research on the loading problems has been 
on the two-fiber bi-directional SONET ring except for Wan 
and Yang [7]. They noticed that each link on the two-fiber bi-
directional SONET ring requires a capacity of at least the sum 
of both directional working traffic due to the protection 
requirement. Wan and Yang [7] considered the min-max 
loading problem on an unidirectional SONET ring with two 
working counter rotated fibers. 

This paper develops efficient loading algorithms for the split 
and unsplit loading problems on the RPR. 

II. Problem Description 

Consider an RPR network with n nodes sequentially 
numbered from 1 to n in the clockwise direction, where two 
counter-rotating data links exist between two consecutive 
nodes. Suppose that there are K types of demands dk on the ring 
bandwidth, k=1,2,…, K. For each demand dk, let Ok and Dk 
denote the originating and terminating nodes, respectively. The 
demand traffic dk of the RPR is composed of mainly internet 
traffic and measured usually as bits per second.  

Let xk be a variable denoting the fraction of the total demand 
between Ok and Dk routed in the clockwise direction. Thus, xk 
=1 and xk =0 indicate that all the demand dk are routed in a 
clockwise and counter-clockwise direction, respectively. 

Let +
kL  denote the set of links contained in the clockwise 

path from Ok to Dk for a demand type k as depicted in Fig. 1. 
Similarly, let +− −= kk LLL denote the set of links contained in 
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the counter-clockwise path from Ok to Dk for a demand type k, 
where L denotes the link set of the given ring. For each link 

}{let, ++ ∈=∈ kl LlkKLl  and }{ −− ∈= kl LlkK denote the 
demand index set of the origin-destination pairs whose 
clockwise and counter-clockwise paths contain the link l, 
respectively. 

Our problem is to find the optimal loading of the RPR 
either with or without demand splitting. For the problem, 
let z represent the required ring capacity associated with a 
loading. Additionally, let’s denote the link loads as +

lR  and 
−
lR  for the clockwise and counter-clockwise directional 

link l, respectively. In other words, kk
Kk

l xdR
l
+∈

+ ∑= and 

).1( kk
Kk

l xdR
l

−∑=
−∈

−  The splitting problem can then be 

expressed as ,10and,,{min ≤≤≥≥ −+
kll

x
xRzRzz

k

for all l  

and k}, termed P1 in this paper. The objective of P1 is to find 
{xk} which minimizes the ring load z. The constraints of 

+≥ lRz  and −≥ lRz for all l denote that the ring load z is the 
maximum of the clockwise and counter-clockwise link load, 
respectively. The third constraint 10 ≤≤ kx  for all k implies 
that the splitting is allowed for each demand dk. If the decision 
variable xk is restricted to xk = 0 or 1, then the problem becomes 
an unsplit loading one, termed P2 in this paper.  

The researches of [4], [5] and [6] are on the problems of 
}{min −+ +≥ llx

RRzz
k

, and there is no previous research on P1 

and P2 except Wan and Yang [7], where Wan and Yang 
discussed P1 without the development of any solution 
algorithm. We noticed that the loading problem is only a 
subproblem within the comprehensive ring planning and the 
problem has to be solved multiple times in practical 
applications. Therefore, the efficiency of a loading algorithm 
has a big effect on the overall performance of the planning 
procedure. This paper develops an efficient optimal solution 
algorithm for P1 in section III and suggests two heuristic 
algorithms for P2 in section IV. 

III. Algorithm for Split Loading Problem  

There exist two types of the ring loading algorithm; one is a 
construction type and the other is an improvement type. This 
section develops the improvement type algorithm for problem 
(P1) with the initial solution of xk =1 for all k.  
  The following property is derived by Wan and Yang [7]. 

Property 1. The ring load z is a convex function with respect 

to .
1

kk

K

k
xd

=
∑  

Even though Property 1 characterizes the convexity of 
the ring load z, finding the optimal loading is difficult since 
there are many alternatives {xk} with the same value of 

.
1

kk

K

k
xd

=
∑  Therefore, we further characterize the optimal 

routing by explicitly considering each demand type. For 
the characterization, let’s define additional notations i

kx  and 

iδ  such that }{max
1

i
kk

Kknli xd
l
+∈≤≤

Σ=δ – )}1({max
1

i
kk

Kknl
xd

l

−Σ
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11

−

≤≤

+
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− lnllnl

RR  where i
kx  denotes the variable xk at 

the i-th iteration. Let ji
i
j

i
j dxx /1 ∆−=+ for a demand type j 

and i
k

i
k xx =+1 for all k, jk ≠ , where }.,2/min{ jii dδ=∆  

Then, iδ  has the following property, where its proof is given 
in the Appendix. 

Property 2. The values of }{ iδ  have a relationship of 

1+≥ ii δδ  for each i, i=1,2,…, K-1. 

According to Property 2, if we find out a solution with 
iδ =0, then the current solution is an optimal solution. Based 

upon Property 2, we develop an optimal solution algorithm, 
denoted as the min-max algorithm. 

Min-Max Algorithm 

Step 0. Sequence all the K demands as follows. First, for the 
demands with Ok >Dk if ,

21 kk OO > then k1<k2; if 

21 kk OO = and 
21 kk DD < , then k1<k2. Then, for the demands 

with Ok <Dk, if ,
21 kk OO < then k1<k2. Finally, if 

21 kk OO = and ,
21 kk DD >  then k1<k2. If sequencing is 

finished, set i as 1. 

Step 1. Let 1=i
kx  for all k, k=1,2,…, K, where i

kx  
denotes all the demand dk routed in a clockwise direction at the 
i-th iteration. Calculate each initial clockwise link load as 

i
kk

Kk
l xdR

l
+∈

+ ∑=  and let 0=−
lR  for all links l. 

Step 2. Compute }.{max}{max
11

−

≤≤

+

≤≤
−= lnllnli RRδ  If iδ > 0, go 

to step 3. Otherwise, stop. 

Step 3. (1) For a link l1 such that ,}{max
11

++

≤≤
= llnl

RR  find a 
demand type j with maximum clockwise load on the link l1, i.e., 

}.{maxarg
1

i
kk

Kk
xdj

l
+∈

=   
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(2) Calculate i∆ for the demand j as }.,2/min{ jii dδ=∆  
(3) Let ji

i
j

i
j dxx /1 ∆−=+  and i

k
i
k xx =+1 for all k, 

k=1,2,…, K, j≠k . 
(4) For each link l, let ill RR ∆−= ++  if ,+∈ jLl  and let 

,ill RR ∆+= −− otherwise. Go to step 2 with i = i+1 while 
.Ki ≤  

Step 3 of the min-max algorithm improves the current 
solution }{ i

kx  by rerouting the amount of i∆  traffic 
demand of demand type j, where the rerouting of demand j 
makes that either the resulting solution }{ 1+i

kx  satisfies 
}{max}{max

11

−

≤≤

+

≤≤
= lnllnl

RR or all the demand dj is routed in the 

counter-clockwise direction. Step 3 is activated only when 
0>iδ  for demand type ;,

1

+∈ lKjj therefore, ,1+> ii δδ  
and the algorithm terminates with 0=iδ . The rerouting step 
requires O(n) for each demand type k and there are K demand 
types; thus, the overall computational time complexity of the 
min-max algorithm is O(nK). 

IV. Algorithms for Unsplit Loading Problem  

The unsplit loading problem (P2) is NP-complete; therefore 
a heuristic algorithm is required. Wan and Yang [7] suggested 
heuristic algorithms for P2 on a unidirectional SONET ring 
and evaluated their worst case performance. This section 
suggests two heuristic algorithms of the construction type for 
RPR networks and evaluates their average performance.  

Heuristic Algorithm H1 

Step 0. Find an optimal solution }{ *
kx  by using the min-

max algorithm.  

Step 1. If all sxk '*  are integers, stop. Otherwise, let S 
= ),1(,},10{ ****

kk
Kk

lkk
Kk

lkk xdRxdRxx
ll

−Σ=Σ=<<
−+ ∈

−

∈

+  and 
go to step 2. 

Step 2. For each k, ,Sk ∈  set the value of *
kx  as zero or 

one as follows. 

(1) Calculate }}{max,}{maxmax{ **
1 kkl

Ll
kkl

Ll
xdRxdR

kk

+−= −

∈

+

∈ −+
λ  

and .})1(}{max),1(}{maxmax{ **
2 kkl

Ll
kkl

Ll
xdRxdR

kk

−−−+= −

∈

+

∈ −+
λ  

(2) If ,21 λλ < then set *
kkll xdRR −= ++ for ,+∈ kLl  

*
kkll xdRR += −−  for ,−∈ kLl  and .0* =kx Otherwise, set 

)1( *
kkll xdRR −+= ++ for ,+∈ kLl )1( *

kkll xdRR −−= −− for 
,−∈ kLl  and .1* =kx  

The heuristic algorithm H1 uses the min-max algorithm of 
problem [P1] at Step 0. Step 2 reroutes the demand type k in set S 
to one of the two directions which would result in the smaller 

increase of ring load, where 1λ  and 2λ  denote the amount of 
increasing ring load resulting from entirely rerouting the demand 
k in the counter-clockwise and clockwise directions, respectively. 

We can also consider the shortest-distance routing as another 
heuristic algorithm, denoted as H2. 

Heuristic Algorithm H2  

For each k, if 2 nOD kk >− )(  when ,kk DO <  or if 
nOD kk −>− )(2  when ,kk DO >  set .0=kx Otherwise, 

set .1=kx  

For H1 and H2 algorithms, we compare their average 
performance as shown in Table 1. The first column in Table 1 
represents the number of nodes n in the ring and total number 
of demand types K. For each instance (n, K), we randomly 
generate ten problems with demands between 5 and 100 for 
randomly selected pairs of originating and terminating nodes, 
and find out the resulted average ring load (Load) and calculate 
the average computation time (Time) of H1 and H2 using 
Visual C/C++ code on a Pentium IV PC (1.0 GHz, Windows 
XP). For an evaluation of the solution quality, we calculate the 
relative deviations as 

,100
algorithm)maxminof(load

algorithm)maxminof(load2)Hor1Hof(load
×

−
−−  

since the solution of P1 is a lower bound of the optimal solution  
 

Table 1. Mean value of solutions and CPU times. 

Problem Size H1 Algorithm H2 Algorithm 

(n, K) Load 
(Deviation) 

Time (s) Load 
(Deviation) 

Time (s)

(5, 6) 
(5, 8) 
(5, 10) 

117.4 (12.72)
143.7 (9.44)
160.3 (2.89)

0.000076 
0.000091 
0.000109 

164.6 (58.04)
253.7 (93.22)

311.6 (100)

0.000006
0.000007
0.000007

(10, 12) 
(10, 23) 
(10, 45) 

224.4 (11.20)
368.4 (1.68)
679.2 (2.86)

0.000203 
0.000499 
0.001782 

307.2 (52.23)
724.6 (100)

1320.6 (100)

0.000013
0.000017
0.000031

(15, 25) 
(15, 50) 

(15, 105)

419.9 (3.11)
744.1 (4.68)

1519.0 (2.82)

0.000923 
0.003085 
0.011498 

775.6 (90.45)
1387.1 (95.15)

2954.8 (100)

0.000029
0.000043
0.000095

(20, 40) 
(20, 95) 

(20, 190)

578.6 (5.09)
1336.9 (0.92)
2650.1 (2.10)

0.002274 
0.012608 
0.039352 

1085.9 (97.24)
2627.3 (98.32)

5191.0 (100)

0.000045
0.000102
0.000217

(25, 60) 
(25, 150)
(25, 300)

901.5 (4.21)
2099.1 (2.64)
4213.3 (1.71)

0.005879 
0.033224 
0.105620 

4230.7 (100)
4090.2 (100)
8284.8 (100)

0.000083
0.000187
0.000372

(30, 90) 
(30, 200)
(30, 435)

1277.5 (3.55)
2739.6 (1.64)
5992.7 (1.45)

0.016318 
0.061990 
0.291000 

2434.0 (97.29)
5390.7 (100)

11814.6 (100)

0.000136
0.000288
0.000676
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of P2. We can observe that the deviation of H1 does not 
increase as (n, K) increases and the mean deviation of H1 is 
4.15%. However, H2 has a mean deviation of 93.44% and its 
deviation increases as (n, K) increases. Even if the CPU times 
of both algorithms increase as (n, K) increases, the computation 
time is not large. Therefore, we can conclude that H1 and the 
min-max algorithm can be used for good load balancing even 
when the ring has a large value of (n, K). 

V. Conclusion 

This paper considers two min-max loading problems either 
with or without load splitting on an RPR. For the load splitting 
problem, we characterize its optimal solution to develop an 
efficient algorithm, the min-max algorithm. For the unsplit 
loading problem, we suggested two heuristic algorithms based 
upon the min-max algorithm and the short-way routing 
concept and showed their efficiency by using various 
numerical examples. We expect that our algorithms will be 
used for efficient ring loading on an RPR or a unidirectional 
dual ring network to improve the ring utilization. However, the 
development of improvement type algorithms for the effective 
loading of problem [P2] remains as a further study.  
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Appendix : Proof of Property 2 
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For case 1, 1+iδ becomes }{max}{max −
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by the supposition of the case.  

The relationship 1+≥ ii δδ can be proven for all the other 
cases similarly. 


