

110 Kwang Soo Cho et al. ETRI Journal, Volume 27, Number 1, February 2005

ABSTRACT⎯The resilient packet ring (RPR) is a data
optimized ring network, where one of the key issues is on load
balancing for competing streams of elastic traffic. This paper
suggests three efficient traffic loading algorithms on the RPR.
For the algorithms, we evaluate their efficiency via analysis or
simulation.

Keywords⎯Resilient packet ring (RPR), loading problem,
counter-rotating ring, routing, load balancing.

I. Introduction
This paper concerns load balancing problems on a resilient

packet ring (RPR), where the RPR is offered by IEEE 802.17
[1]. The RPR is well suited for a metropolitan area network
with two counter-rotating rings where multiple stations share
the bandwidth. The ring loading (load balancing) problems can
be classified into two kinds: ones with and ones without
demand splitting. Split loading allows the splitting of a demand
into two portions to be carried out in two directions, while an
unsplit loading is one in which each demand must be entirely
carried out in either the clockwise or counter-clockwise
direction. Since the cost of the ring increases with its capacity, it
is desirable to route the demands so as to minimize this
maximum load. The min-max problem is stated as follows:
given a set of nodes on a ring network and a set of demands
between pairs of nodes, how to allocate bandwidths to each
traffic demand so that the maximum of the loads on the links in
the network is as small as possible [2], [3].

Manuscript received June 03, 2004; revised Dec. 16, 2004.
Kwang Soo Cho (phone: +82 42 860 6191, email: choks@etri.re.kr), Heyung Sub Lee

(email: leehs@etri.re.kr), and Bong Tae Kim (email: bkim@etri.re.kr) are with Broadband
Convergence Network Research Division, ETRI, Daejeon, Korea.

Un Gi Joo (email: ugjoo@sunmoon.ac.kr) is with the Department of Knowledge and
Industrial Engineering, Sunmoon University, Chungnam, Korea.

Won Don Lee (email: wlee@cnu.ac.kr) is with the Department of Computer Science,
Chungnam National University, Daejeon, Korea.

For research on the unsplit min-max problem, Cosares and
Saniee [4] and Dell’Amico et al. [5] studied the problems on
bi-directional synchronous optical network (SONET) rings.
For the split loading problem, Myung et al. [6] and Wan and
Yang [7] considered the min-max loading problem on the
SONET rings. Most research on the loading problems has been
on the two-fiber bi-directional SONET ring except for Wan
and Yang [7]. They noticed that each link on the two-fiber bi-
directional SONET ring requires a capacity of at least the sum
of both directional working traffic due to the protection
requirement. Wan and Yang [7] considered the min-max
loading problem on an unidirectional SONET ring with two
working counter rotated fibers.

This paper develops efficient loading algorithms for the split
and unsplit loading problems on the RPR.

II. Problem Description

Consider an RPR network with n nodes sequentially
numbered from 1 to n in the clockwise direction, where two
counter-rotating data links exist between two consecutive
nodes. Suppose that there are K types of demands dk on the ring
bandwidth, k=1,2,…, K. For each demand dk, let Ok and Dk
denote the originating and terminating nodes, respectively. The
demand traffic dk of the RPR is composed of mainly internet
traffic and measured usually as bits per second.

Let xk be a variable denoting the fraction of the total demand
between Ok and Dk routed in the clockwise direction. Thus, xk
=1 and xk =0 indicate that all the demand dk are routed in a
clockwise and counter-clockwise direction, respectively.

Let +
kL denote the set of links contained in the clockwise

path from Ok to Dk for a demand type k as depicted in Fig. 1.
Similarly, let +− −= kk LLL denote the set of links contained in

Efficient Load Balancing Algorithms for a
Resilient Packet Ring

 Kwang Soo Cho, Un Gi Joo, Heyung Sub Lee, Bong Tae Kim, and Won Don Lee

ETRI Journal, Volume 27, Number 1, February 2005 Kwang Soo Cho et al. 111

Fig. 1. Definition of .and −+
kk LL

dk(1-xk) dkxk
+
kL

+− −= kk LLL

Ok

l+1

l

l-1

Dk

the counter-clockwise path from Ok to Dk for a demand type k,
where L denotes the link set of the given ring. For each link

}{let, ++ ∈=∈ kl LlkKLl and }{ −− ∈= kl LlkK denote the
demand index set of the origin-destination pairs whose
clockwise and counter-clockwise paths contain the link l,
respectively.

Our problem is to find the optimal loading of the RPR
either with or without demand splitting. For the problem,
let z represent the required ring capacity associated with a
loading. Additionally, let’s denote the link loads as +

lR and
−
lR for the clockwise and counter-clockwise directional

link l, respectively. In other words, kk
Kk

l xdR
l
+∈

+ ∑= and

).1(kk
Kk

l xdR
l

−∑=
−∈

− The splitting problem can then be

expressed as ,10and,,{min ≤≤≥≥ −+
kll

x
xRzRzz

k

for all l

and k}, termed P1 in this paper. The objective of P1 is to find
{xk} which minimizes the ring load z. The constraints of

+≥ lRz and −≥ lRz for all l denote that the ring load z is the
maximum of the clockwise and counter-clockwise link load,
respectively. The third constraint 10 ≤≤ kx for all k implies
that the splitting is allowed for each demand dk. If the decision
variable xk is restricted to xk = 0 or 1, then the problem becomes
an unsplit loading one, termed P2 in this paper.

The researches of [4], [5] and [6] are on the problems of
}{min −+ +≥ llx

RRzz
k

, and there is no previous research on P1

and P2 except Wan and Yang [7], where Wan and Yang
discussed P1 without the development of any solution
algorithm. We noticed that the loading problem is only a
subproblem within the comprehensive ring planning and the
problem has to be solved multiple times in practical
applications. Therefore, the efficiency of a loading algorithm
has a big effect on the overall performance of the planning
procedure. This paper develops an efficient optimal solution
algorithm for P1 in section III and suggests two heuristic
algorithms for P2 in section IV.

III. Algorithm for Split Loading Problem

There exist two types of the ring loading algorithm; one is a
construction type and the other is an improvement type. This
section develops the improvement type algorithm for problem
(P1) with the initial solution of xk =1 for all k.
 The following property is derived by Wan and Yang [7].

Property 1. The ring load z is a convex function with respect

to .
1

kk

K

k
xd

=
∑

Even though Property 1 characterizes the convexity of
the ring load z, finding the optimal loading is difficult since
there are many alternatives {xk} with the same value of

.
1

kk

K

k
xd

=
∑ Therefore, we further characterize the optimal

routing by explicitly considering each demand type. For
the characterization, let’s define additional notations i

kx and

iδ such that }{max
1

i
kk

Kknli xd
l
+∈≤≤

Σ=δ –)}1({max
1

i
kk

Kknl
xd

l

−Σ
−∈≤≤

=

},{max}{max
11

−

≤≤

+

≤≤
− lnllnl

RR where i
kx denotes the variable xk at

the i-th iteration. Let ji
i
j

i
j dxx /1 ∆−=+ for a demand type j

and i
k

i
k xx =+1 for all k, jk ≠ , where }.,2/min{ jii dδ=∆

Then, iδ has the following property, where its proof is given
in the Appendix.

Property 2. The values of }{ iδ have a relationship of

1+≥ ii δδ for each i, i=1,2,…, K-1.

According to Property 2, if we find out a solution with
iδ =0, then the current solution is an optimal solution. Based

upon Property 2, we develop an optimal solution algorithm,
denoted as the min-max algorithm.

Min-Max Algorithm

Step 0. Sequence all the K demands as follows. First, for the
demands with Ok >Dk if ,

21 kk OO > then k1<k2; if

21 kk OO = and
21 kk DD < , then k1<k2. Then, for the demands

with Ok <Dk, if ,
21 kk OO < then k1<k2. Finally, if

21 kk OO = and ,
21 kk DD > then k1<k2. If sequencing is

finished, set i as 1.

Step 1. Let 1=i
kx for all k, k=1,2,…, K, where i

kx
denotes all the demand dk routed in a clockwise direction at the
i-th iteration. Calculate each initial clockwise link load as

i
kk

Kk
l xdR

l
+∈

+ ∑= and let 0=−
lR for all links l.

Step 2. Compute }.{max}{max
11

−

≤≤

+

≤≤
−= lnllnli RRδ If iδ > 0, go

to step 3. Otherwise, stop.

Step 3. (1) For a link l1 such that ,}{max
11

++

≤≤
= llnl

RR find a
demand type j with maximum clockwise load on the link l1, i.e.,

}.{maxarg
1

i
kk

Kk
xdj

l
+∈

=

112 Kwang Soo Cho et al. ETRI Journal, Volume 27, Number 1, February 2005

(2) Calculate i∆ for the demand j as }.,2/min{ jii dδ=∆
(3) Let ji

i
j

i
j dxx /1 ∆−=+ and i

k
i
k xx =+1 for all k,

k=1,2,…, K, j≠k .
(4) For each link l, let ill RR ∆−= ++ if ,+∈ jLl and let

,ill RR ∆+= −− otherwise. Go to step 2 with i = i+1 while
.Ki ≤

Step 3 of the min-max algorithm improves the current
solution }{ i

kx by rerouting the amount of i∆ traffic
demand of demand type j, where the rerouting of demand j
makes that either the resulting solution }{ 1+i

kx satisfies
}{max}{max

11

−

≤≤

+

≤≤
= lnllnl

RR or all the demand dj is routed in the

counter-clockwise direction. Step 3 is activated only when
0>iδ for demand type ;,

1

+∈ lKjj therefore, ,1+> ii δδ
and the algorithm terminates with 0=iδ . The rerouting step
requires O(n) for each demand type k and there are K demand
types; thus, the overall computational time complexity of the
min-max algorithm is O(nK).

IV. Algorithms for Unsplit Loading Problem

The unsplit loading problem (P2) is NP-complete; therefore
a heuristic algorithm is required. Wan and Yang [7] suggested
heuristic algorithms for P2 on a unidirectional SONET ring
and evaluated their worst case performance. This section
suggests two heuristic algorithms of the construction type for
RPR networks and evaluates their average performance.

Heuristic Algorithm H1

Step 0. Find an optimal solution }{ *
kx by using the min-

max algorithm.

Step 1. If all sxk '* are integers, stop. Otherwise, let S
=),1(,},10{ ****

kk
Kk

lkk
Kk

lkk xdRxdRxx
ll

−Σ=Σ=<<
−+ ∈

−

∈

+ and
go to step 2.

Step 2. For each k, ,Sk ∈ set the value of *
kx as zero or

one as follows.

(1) Calculate }}{max,}{maxmax{ **
1 kkl

Ll
kkl

Ll
xdRxdR

kk

+−= −

∈

+

∈ −+
λ

and .})1(}{max),1(}{maxmax{ **
2 kkl

Ll
kkl

Ll
xdRxdR

kk

−−−+= −

∈

+

∈ −+
λ

(2) If ,21 λλ < then set *
kkll xdRR −= ++ for ,+∈ kLl

*
kkll xdRR += −− for ,−∈ kLl and .0* =kx Otherwise, set

)1(*
kkll xdRR −+= ++ for ,+∈ kLl)1(*

kkll xdRR −−= −− for
,−∈ kLl and .1* =kx

The heuristic algorithm H1 uses the min-max algorithm of
problem [P1] at Step 0. Step 2 reroutes the demand type k in set S
to one of the two directions which would result in the smaller

increase of ring load, where 1λ and 2λ denote the amount of
increasing ring load resulting from entirely rerouting the demand
k in the counter-clockwise and clockwise directions, respectively.

We can also consider the shortest-distance routing as another
heuristic algorithm, denoted as H2.

Heuristic Algorithm H2

For each k, if 2 nOD kk >−)(when ,kk DO < or if
nOD kk −>−)(2 when ,kk DO > set .0=kx Otherwise,

set .1=kx

For H1 and H2 algorithms, we compare their average
performance as shown in Table 1. The first column in Table 1
represents the number of nodes n in the ring and total number
of demand types K. For each instance (n, K), we randomly
generate ten problems with demands between 5 and 100 for
randomly selected pairs of originating and terminating nodes,
and find out the resulted average ring load (Load) and calculate
the average computation time (Time) of H1 and H2 using
Visual C/C++ code on a Pentium IV PC (1.0 GHz, Windows
XP). For an evaluation of the solution quality, we calculate the
relative deviations as

,100
algorithm)maxminof(load

algorithm)maxminof(load2)Hor1Hof(load
×

−
−−

since the solution of P1 is a lower bound of the optimal solution

Table 1. Mean value of solutions and CPU times.

Problem Size H1 Algorithm H2 Algorithm

(n, K) Load
(Deviation)

Time (s) Load
(Deviation)

Time (s)

(5, 6)
(5, 8)
(5, 10)

117.4 (12.72)
143.7 (9.44)
160.3 (2.89)

0.000076
0.000091
0.000109

164.6 (58.04)
253.7 (93.22)

311.6 (100)

0.000006
0.000007
0.000007

(10, 12)
(10, 23)
(10, 45)

224.4 (11.20)
368.4 (1.68)
679.2 (2.86)

0.000203
0.000499
0.001782

307.2 (52.23)
724.6 (100)

1320.6 (100)

0.000013
0.000017
0.000031

(15, 25)
(15, 50)

(15, 105)

419.9 (3.11)
744.1 (4.68)

1519.0 (2.82)

0.000923
0.003085
0.011498

775.6 (90.45)
1387.1 (95.15)

2954.8 (100)

0.000029
0.000043
0.000095

(20, 40)
(20, 95)

(20, 190)

578.6 (5.09)
1336.9 (0.92)
2650.1 (2.10)

0.002274
0.012608
0.039352

1085.9 (97.24)
2627.3 (98.32)

5191.0 (100)

0.000045
0.000102
0.000217

(25, 60)
(25, 150)
(25, 300)

901.5 (4.21)
2099.1 (2.64)
4213.3 (1.71)

0.005879
0.033224
0.105620

4230.7 (100)
4090.2 (100)
8284.8 (100)

0.000083
0.000187
0.000372

(30, 90)
(30, 200)
(30, 435)

1277.5 (3.55)
2739.6 (1.64)
5992.7 (1.45)

0.016318
0.061990
0.291000

2434.0 (97.29)
5390.7 (100)

11814.6 (100)

0.000136
0.000288
0.000676

ETRI Journal, Volume 27, Number 1, February 2005 Kwang Soo Cho et al. 113

of P2. We can observe that the deviation of H1 does not
increase as (n, K) increases and the mean deviation of H1 is
4.15%. However, H2 has a mean deviation of 93.44% and its
deviation increases as (n, K) increases. Even if the CPU times
of both algorithms increase as (n, K) increases, the computation
time is not large. Therefore, we can conclude that H1 and the
min-max algorithm can be used for good load balancing even
when the ring has a large value of (n, K).

V. Conclusion

This paper considers two min-max loading problems either
with or without load splitting on an RPR. For the load splitting
problem, we characterize its optimal solution to develop an
efficient algorithm, the min-max algorithm. For the unsplit
loading problem, we suggested two heuristic algorithms based
upon the min-max algorithm and the short-way routing
concept and showed their efficiency by using various
numerical examples. We expect that our algorithms will be
used for efficient ring loading on an RPR or a unidirectional
dual ring network to improve the ring utilization. However, the
development of improvement type algorithms for the effective
loading of problem [P2] remains as a further study.

References

[1] RPR Alliance, A Summary and Overview of the IEEE 802.17
Resilient Packet Ring Standard, June 24, 2004.

[2] L. Massoulie and J. Roberts, “Bandwidth Sharing : Objectives and
Algorithms,” INFOCOM’99, 1999, pp.1395-1403.

[3] H-S. Lee, L-G. Joo, H-H. Lee, and W-W. Kim, “Optimal Time
Slot Assignment Algorithm for Combined Unicast and Multicast
Packets,” ETRI J., vol. 24, no. 2, 2002, pp. 172-175.

[4] S. Cosares and I. Saniee, “An Optimization Problem Related to
Balancing Loads on SONET Rings,” Telecomm. Sys., vol.3, 1994,
pp.165-181.

[5] M. Dell’Amico, M. Labbe, and F. Maffioli, “Exact Solution of the
SONET Ring Loading Problem,” Oper. Res. Lett., vol.25, 1999,
pp.119-129.

[6] Y.-S. Myung, H.-G. Kim, and D.-W. Tcha, “Optimal Load
Balancing on SONET Bidirectional Rings,” Oper. Res., vol.45,
1997, pp.148-152.

[7] P.-J. Wan and Y. Yang, “Load-Balanced Routing in Counter
Rotated SONET Rings,” Networks, vol.35, 2000, pp.279-286.

Appendix : Proof of Property 2

}.,2/min{and)1(,

where

},}{max},{maxmax{

}}{max,}{maxmax{

and

}}{max},{maxmax{}}{max},{maxmax{

}},{max},{maxmax{}{

and

}}{max},{maxmax{}{maxSince

1

1

1

jii
i
k

Kk
kl

Kk

i
kkl

il
Ll

l
Ll

l
Ll

il
Ll

i

l
Ll

l
Ll

l
Ll

l
Ll

i

l
Ll

l
Ll

lnl

l
Ll

l
Ll

lnl

dxdRxdR

RR

RR

RRRR

RRRMax

RRR

ll

jj

jj

jjjj

jj

jj

δ

δ

δ

=∆−==

∆+−

∆−=

−=

=

=

∑∑
−+

−+

−+

−+−+

−+

−+

∈

−

∈

+

−

∈

−

∈

+

∈

+

∈
+

−

∈

−

∈

+

∈

+

∈

−

∈

−

∈

−

≤≤

+

∈

+

∈

+

≤≤

 There are four case situations such that

.}{max}{maxand}{max}{max:4Case

,}{max}{maxand}{max}{max:3Case

,}{max}{maxand}{max}{max:2Case

,}{max}{maxand}{max}{max:1Case

il
Ll

l
Ll

il
Ll

l
Ll

il
Ll

l
Ll

il
Ll

l
Ll

il
Ll

l
Ll

il
Ll

l
Ll

il
Ll

l
Ll

il
Ll

l
Ll

RRRR

RRRR

RRRR

RRRR

jjjj

jjjj

jjjj

jjjj

∆+<∆−<

∆+≥∆−<

∆+<∆−≥

∆+≥∆−≥

−

∈

−

∈

+

∈

+

∈

−

∈

−

∈

+

∈

+

∈

−

∈

−

∈

+

∈

+

∈

−

∈

−

∈

+

∈

+

∈

−++−

−++−

−++−

−++−

For case 1, 1+iδ becomes }{max}{max −

∈

+

∈ +−
− l

Ll
l

Ll
RR

jj

and we

can easily notice that 1+≥ ii δδ since ≤+

∈ −
}{max l

Ll
R

j

}}{max},{maxmax{ +

∈

+

∈ −+ l
Ll

l
Ll

RR
jj

and },{max{max}{max −

∈

−

∈ ++
= l

Ll
l

Ll
RR

jj

}}{max −

∈ − l
Ll

R
j

by the supposition of the case.

The relationship 1+≥ ii δδ can be proven for all the other
cases similarly.

