• Title/Summary/Keyword: PWM inverter

Search Result 1,384, Processing Time 0.025 seconds

Analysis of Voltage Stress in Stator Windings of IGBT PWM Inverter-Fed Induction Motor Systems

  • Hwang Don-Ha;Lee Ki-Chang;Jeon Jeong-Woo;Kim Yong-Joo;Lee In-Woo;Kim Dong-Hee
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.43-49
    • /
    • 2005
  • The high rate of voltage rise (dv/dt) in motor terminals caused by high-frequency switching and impedance mismatches between inverter and motor are known as the primary causes of irregular voltage distributions and insulation breakdowns on stator windings in IGBT PWM inverter-driven induction motors. In this paper, voltage distributions in the stator windings of an induction motor driven by an IGBT PWM inverter are studied. To analyze the irregular voltages of stator windings, high frequency parameters are derived from the finite element (FE) analysis of stator slots. An equivalent circuit composed of distributed capacitances, inductance, and resistance is derived from these parameters. This equivalent circuit is then used for simulation in order to predict the voltage distributions among the turns and coils. The effects of various rising times in motor terminal voltages and cable lengths on the stator voltage distribution are also presented. For a comparison with simulations, an induction motor with taps in the stator turns was made and driven by a variable-rising time switching surge generator. The test results are shown.

A Hysteresis Current Controller with Improved Voltage Waveform using N.P.C Structure (N.P.C 구조에 의한 히스테리시스 전류제어기의 전압파형 개선)

  • 김윤호;이병송
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.51-57
    • /
    • 1997
  • A new current controlled PWM technique with N.P.C structure is proposed in this paper. A current controlled PWM technique with neutral-point-clamped pulsewidth modulation inverter composed of main switching devices which operates as switches for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential is described. This inverter output contains less harmonic content as compared with that of a conventional current controlled PWM type. In addition, the proposed current controlled PWM technique has lower switching frequency than that of conventional current controlled PWM technique at the same current limit. Two inverters are compared analytically. The improved voltage waveform of current controlled PWM with N.P.C structure is analyzed and the performance is investigated by the computer simulation.

  • PDF

A Study on the Multi-carrier PWM Methods for Voltage Balancing of Flying Capacitor in the Flying Capacitor Multi-level Inverter (플라잉 커패시터 멀티레벨 인버터의 플라잉 커패시터 전압 균형을 위한 멀리 캐리어 PWM 기법에 대한 연구)

  • Jin, Bum-Seung;Kim, Tae-Jin;Kang, Dae-Wook;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.298-301
    • /
    • 2005
  • The flying capacitor voltage control of the flying capacitor multi-level inverter (FCMLI) is very important for safe operation. The voltage unbalancing of flying capacitors caused serious problems in safety and reliability of system. In the FCMLI, balancing problem of the flying capacitor has its applications limited. The voltage unbalance is occurred by the difference of each capacitors charging and discharging time applied to FCMLI. This paper investigates and analyzes multi-carrier PWM methods to solve capacitor voltage balancing problem. The Phase-Shift PWM (PSPWM) method that is commonly used, The Modified Carrier-Redistribution PWM (MCRPWM) method and The Saw-Tooth-Rotation PWM (STRPWM) method are discussed and compared with respect to switching state, balancing voltage of capacitors and output waveform. These three PWM methods are analyzed by using a flying capacitor three-level inverter and provided result through simulation. Finally, the harmonics about the output voltages of their methods are compared using the harmonic distortion factor (HDF).

  • PDF

Nonlinear Control of Output Voltages of PWM Inverters for Stand-Alone Wind Power Generation (독립형 풍력발전용 PWM 인버터의 출력전압의 비선형 제어)

  • Jang, Jeong-Ik;Koo, Seoung-Young;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.131-138
    • /
    • 2007
  • In this paper, a novel nonlinear control method of the CVCF(constant voltage and constant frequency) output voltage for the three-phase PWM inverter with LC output filters is proposed. A nonlinear modeling including the output LC filters is linearized by feedback linearization theory, the controllers of which can be designed based on a linear control theory. It is applied to the DC/AC power conversion of the PWM inverter for stand-alone wind power generation system. It has been verified by the experimental results that the proposed control scheme gives high dynamic responses at load variation as well as a zero steady-state error.

A design of hybrid PWM inverter using microprocessor (마이크로프로세서를 이용한 하이브리드 PWM 인버터의 설계)

  • 노창주;임재문;박중순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1987
  • In an effort to conserve electric power, variable voltage variable frequency pulse width modulated (PWM) inverters are being applied increasingly to the variable speed control of the induction motors. The use of the PWM technique in motor drive applications is considered advantageous in many ways. For industrial applications, the PWM drive obtains its DC input through simple uncontrolled rectification of the commercial AC line and is favored for its good power factor, good efficiency, its relative freedom regulation problem, and mainly for its ability to operate the motor with nearly sinusoidal current waveforms. The purpose of this paper is to design a three phase natural sampled PWM inverter using microprocessor with simple control algorithm and hybrid control circuit has been built to implement this PWM scheme. In this system, the microprocessor can be used only for calculations directly related to motor control tasks by the design of hybrid circuit which sends PWM signals to the motor.

  • PDF

The Characteristics of Control Scheme and Inner Feedback Control with HC of Current-Controlled PWM Inverter (전류제어 PWM인버터의 HC에 대한 제어방식과 내부 피이드백제어의 특성)

  • 정동화;배진호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1031-1041
    • /
    • 1992
  • Existing current-controlled inverters with hysteresis controller (HC) result in the dependence of the inverter on its load characteristics, poor inverter utilization due to too much or too little supply voltage, and the current error in the hysteresis band(HB) which causes deterioration of operation of the supplied motor. In this paper, techniques and results of modeling the operation of current-controlled three phase power inverter with HC are presented. Four symmetrical control schemes are considered: the so called three independent control, three semi-dependent control(a), three semi-dependent control(b) and three dependent control each using three current controller. The dependence of the inverter on its load has been studied. To overcome this difficulty, an inner feedback control has been introduced and optimum parameter has been determined. With the addition of an inner feedback control, adjustment of the switching frequency to a desired value is possible. Also, this modification improves operating characteristics of inverter by enforcing a switching pattern of low dependence on the load, resulting in significantly improved quality of the output current.

  • PDF

A Study on the Power Converter Control of Utility Interactive Photovoltaic Generation System (계통 연계형 태양광 발전시스템의 전력변환기 제어에 관한 연구)

  • Na, Seung-Kwon;Ku, Gi-Jun;Kim, Gye-Kuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2009
  • In this paper, a photovoltaic system is designed with a step up chopper and single phase PWM(Pulse Width Modulation) voltage source inverter. Where proposed Synchronous signal and control signal was processed by one-chip microprocessor for stable modulation. The step up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature because solar cell has typical voltage and current dropping character. The single phase PWM voltage source the inverter using inverter consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be developed continuously by connecting with the source of electric power for ordinary use. It can cause the effect of saving electric power. from 10 to 20[%]. The single phase PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. In order to enhance the efficiency of photovoltaic cells, photovoltaic positioning system using sensor and microprocessor was design so that the fixed type of photovoltaic cells and photovoltaic positioning system were compared. In result, photovoltaic positioning system can improved 5% than fixed type of photovoltaic cells. In addition, I connected extra power to the system through operating the system voltage and inverter power in a synchronized way by extracting the system voltage so that the phase of the system and the phase of single-phase inverter of PWM voltage type can be synchronized. And, It controlled in order to provide stable pier to the load and the system through maintaining high lurer factor and low output power of harmonics.

Active Damping of LCL Filter for Three-phase PWM Inverter without Additional Hardware Sensors (추가적인 센서가 필요 없는 3상 PWM 인버터의 LCL 필터 능동댐핑)

  • An, Byoung-Woong;Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Han, Byoung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • In this paper, a new active damping method of LCL filter without capacitor voltage sensors is proposed for 3 phase PWM Inverter. Normally, L filter or LCL filter is used as an output filter of grid connected PWM inverter. An LCL filter has more excellent performance than L filter to reduce harmonic current, so the small inductance value can be used. However, the resonance problem in LCL filter is happen due to the zero impedance by the addition of LC branch. To solve the resonance problem, the various active damping method has been proposed so far. Generally, the virtual resistor active damping methods is required to additional hardware sensors for measurement of capacitor voltage and current. In this paper, the new active damping method is proposed without any capacitor voltage or current sensors. In the proposed method, the resonance component of the capacitor voltage of LCL filter can be observed by a simple MRAS(Model Reference Adaptive System) observer without additional hardware sensors, and this component is suppressed by feedforward compensation. The validity of the proposed method is proven by simulation and experiment on the 3-phase PWM inverter system.

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

Self Control System for Permanent Magnet Synchronous Motor Drives Using Regular-Sampled PWM Method (Regular-sampled PWM 방법(方法)에 의한 영구자석(永久磁石) 동기(同期) 전동기(電動機)의 자기(自己) 제어(制御) 시스템)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Eel-Hwan;Kim, Myung-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.319-322
    • /
    • 1990
  • Self-controlled permanent magnet synchronous motor (PMSM) has similar operating characteristics as seperately excited dc motor. It is favored in servo applications due to its improvement of efficiency and maintenance. This paper presents completely digitalized controller using microprocessor and voltage fed inverter. The speed control system for PMSM is implemented. To control the motor speed, the control system regulates the magnitude of Inverter output voltage by regular-sampled PWM method to generate sinusoidal PWM wave with microprocessor. And to keep the range of inverter switching frequency, it varies the number of pulse train according to the speed.

  • PDF