• Title/Summary/Keyword: PWM filter

Search Result 310, Processing Time 0.028 seconds

Interconnection analysis of active power filter with electronic load simulator with Power-Recovery Capability (능동전력필터와 전력회수 능력이 있는 부하모의장치의 연계시험 분석)

  • Choi, Jun-Young;Lee, Doo-Young;Lee, Dong-Geun;Bae, Byung-Yeol;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.194-196
    • /
    • 2006
  • 본 논문에서는 새로 개발된 전력품질 보상 장치의 성능을 실험실에서 효과적으로 분석하기 위해 필요한 새로운 부하모의장치를 제안하였다. 제안하는 부하 모의장치는 2대의 PWM 인버터가 직류 단을 공유한 구조로 선형과 비 선형부하를 단일기기로 시험 가능하도록 설계되어 있다. 그리고 전력품질보상기의 하나인 능동전력필터와 연계시험을 수행하였다. 본 논문에서는 제안하는 부하모의장치와 능동전력필터의 연계 특성을 분석할 목적으로 PSCAD/EMTDC 소프트웨어를 이용하여 시뮬레이션 실시하였고 또한 실적용시 타당성을 검증할 목적으로 20kVA 용량의 부하모의장치와 10kVA용량의 능동전력필터를 제작하여 실험을 실시하였다. 시뮬레이션과 하드웨어 실험결과 제안하는 부하모의장치는 능동전력필터의 다양한 보상 능력 검증에 충분히 활용가능함을 알 수 있었다.

  • PDF

A study on the PWM power converter with high frequency and high voltage using MOS-GTO (MOS-GTO를 이용한 고주파, 고전압 전력변환기 설계에 관한 연구)

  • Roh, Jin-Eep;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1009-1011
    • /
    • 1992
  • This paper discribes a study on the bridge type power converter for laser high power generator with high frequency and high voltage using MOS-GTO. This converter effectively makes the best of the high frequency HV transformer and input-side equivalent parasitic capacitance of high voltage feeding cable in place of DC output smoothing filter. The cicuit configuration and performance are discussed and design criteria are given. The prototype rated of 10 KW, 100 KHz is implemented and experimental results are given.

  • PDF

Investigation on the Reduction of Radiated Emission Noise in a High Power LED Module Circuit (고출력 LED 구동회로의 방사잡음 저감에 관한 연구)

  • Suh, Jung-Nam;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1574_1575
    • /
    • 2009
  • This paper investigates the reduction of RE(Radiated Emission) noise in a high power LED module circuit using PWM(Pulse Width Module) switching controller circuit. Poorly designed LED lighting module can experience the RE and CE(Conducted Emission) noise problem. This paper propose the reduction of noise source and improvement of EMI filter design in a high power LED lighting module. The experimental and simulation results showed that reduce the RE noise level effectively.

  • PDF

Design and Implementation of a Current Controller for Boost Converters Using a DSP (DSP를 이용한 부스트 컨버터의 전류 제어기 설계 및 구현)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.259-265
    • /
    • 2012
  • This paper introduces a method for design and implementation of a current controller for boost converter operating in continuous conduction mode (CCM) using a digital signal processor (DSP). A Proportional-Integral (PI) type current controller outputs an average voltage command for inductor, used in the input side of the boost converter, and the duty-ratio of PWM (pulse width modulation) signal for switching device is directly calculated from the average voltage command. The gains of the PI current controller are selected such that the current response characteristics are the same as those of a first-order low-pass filter. The proposed current control scheme is implemented using a DSP based on fixed-point math operations and an experimental study has been performed to validate the proposed method.

The Single Phase Converter of Power Factor Collection Type with Simple Switching Method (간이 스위칭법에 의한 단상 역률개선형 컨버터)

  • 문경희;고강훈;김은수;곽동걸;조판제;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.323-326
    • /
    • 1999
  • For decrease the harmonic current components of the power source, a first method is insert the choke coil that used the choke input type rectifier, the booster chopper circuit and buck chopper circuit. And the several method are studying like as the PWM(Pulse Width Modulation) converter and the active filter type which is used the high frequency switching and the sinusoidal wave formed input current. In this type, there are many problem as a low efficiency, increased the noise, the high leakage current and cost up by the high frequency switching. For improve this problems, the partial resonan method is used on the booster inducter and lossles snubber condenser. This method decreased the distortion factor has lower harmonic components than the hard switching and there is no switching loss by the ZCS(Zero Current Switching) at switch turn-on and the ZVS(Zero Voltage Swithcing) at switch turn-off

  • PDF

Harmonic Current Reference Generation of Single-Phase Active Filter for the Converter-Fed Locomotives (고속전철용 단상능동필터의 기준고조파전류 발생 방법)

  • Sung, Gi-Seok;Song, Joong-Ho;Choi, Ik;Choi, Ju-Yeop;Kim, Gwang-Bae;Kim, Kwon-Ho;Lim, Myo-Taek
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.338-341
    • /
    • 1999
  • PWM controlled line-side converters of modern ac traction locomotives inject harmonic currents into the feeding overhead line. This causes problem of electromagnetic interference. Passive and Active filters are usually provided for a reduction of the line harmonics. Active filters are more reasonable than passive filters in terms of weight and space of the filters. Successful control of active filters requires an accurate harmonic current reference. A technique to generate the harmonic current reference is proposed in this paper. The analysis is performed in frequency domain and its effectiveness is verified by simulation.

  • PDF

Integrative Control of Series Active Power Filters for Source Voltage Unbalance Compensation and Power Factor Correction (전원 불평형과 역률을 보상하는 직렬형 능동전력필터의 통합적 제어)

  • Jang, Jeong-Ik;Seok, Jul-Ki;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.258-264
    • /
    • 2006
  • This paper presents an integrative control scheme for series-type active power filters combined with shunt passive filters not only to compensate for the source voltage unbalance and current harmonics but also to correct the power factor. To reduce the power capacity of the active filters, passive filters are connected in parallel. Diode rectifiers are replaced by the PWM converters in order to feed the real power back to the source. Power factor control is performed by changing the phase of the load voltage so that the phase of the source current coincides with that of the source voltage. The resultant voltage reference is the addition of the voltage component compensating for the source voltage unbalance and harmonic currents and the voltage component correcting the power factor. The validity of the proposed algorithm has been verified by experimental results.

A Study on the Detection of Unbalanced Voltages for Instantaneous Voltage Compensation (순시전압 보상을 위한 불평형 전압 검출기법에 관한 연구)

  • Jeong, Hong-Ju;Choe, Si-Yeong;Jeong, Jun-Mo;Song, Jong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.203-209
    • /
    • 2002
  • This paper presents a new control scheme for a DVR(Dynamic Voltage Restorer) system consisting of series voltage source PWM converters. To control negative sequence component of source voltage the detection of negative sequence is necessary. Generally, filtering process is used tn do that. Through this filtering process has some problems. This paper suggests a new method of separating positive and negative sequences. This control system is designed using differential controllers and digital filters, and positive sequence and negative sequences are controlled respectively. The performance of the presented controller and scheme are confirmed through simulation and actual experiment by 2.5kVA prototype DVR.

Regenerative Inverter System for Railway with DC Line Voltage Simulator (직류가선전압 모의장치를 적용한 지하철용 회생인버터 시스템)

  • Ji, Young-Hyok;Cho, Ki-Hyun;Jang, Su-Jin;Won, Chung-Yuen;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1515-1521
    • /
    • 2007
  • In this paper, a unified regenerative inverter system for railway with DC line voltage simulator is proposed. In order to determine the operation characteristics of the regenerative inverter, the DC line voltage simulator is proposed. The DC line voltage simulator, which is based on the AC-DC PWM converter, varies the DC voltage according to the fluctuating voltage which is measured in the actual DC line. The suitable operating point of the regenerative inverter can be estimated from the simulation result. The regenerative inverter operates two modes. When the DC line voltage exceed the operating point, already set up, it works as regenerative inverter to return the excessive power of DC line to the grid. When the DC line voltage is under the operating point, it works as active power filter to compensate harmonic currents. In this paper, the control algorithm of the DC line voltage simulator and that of the regenerative inverter is proposed.

  • PDF

Stand-Alone Type Single-Phase Fuel Cells Micro-Source with ac Voltage Compensation Capability (교류전압 보상 기능을 갖는 독립형 단상 연료전지 마이크로 소스)

  • Jung, Young-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This paper proposes a stand alone type single-phase fuel cells micro-source with a voltage sag compensator for compensating the ac output voltage variations (sag or swell) of micro-source. The proposed micro-source is consist of a PEM(polymer electrolyte membrane) fuel cells simulator, a full bridge de converter, a 60Hz PWM(pulse width modulation) VSI(voltage source inverter), and a voltage sag compensator. Voltage sag compensator is similar to the configuration of hybrid series active power filter, and it is directly connected to micro-source through the injection transformer. Compensation algorithm of a voltage sag compensator adopts a single phase p-q theory. Effectiveness of the proposed the system is verified by the PSIM(power electronics simulation tool) simulation in the steady state and transient state which the proposed system is able to simultaneously compensate the harmonic current and source voltage sag or swell.