• Title/Summary/Keyword: PWM boost converter

Search Result 284, Processing Time 0.029 seconds

A High Frequency Link Direct DC-AC Converter for Fuel Cell Power Source (연료전지 발전 시스템용 고주파 링크 DC-AC 컨버터)

  • Song Y.J.;Jung B.M.;Han S.B.;Jeong H.G.;Park S.I.
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.124-126
    • /
    • 2004
  • This paper describes a boost converter cascaded high frequency link direct do-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from fuel cell is proposed. A new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented in detail.

  • PDF

A High Frequency Link Direct DC-AC Converter for Fuel Cell Power Source (연료전지 발전 시스템용 고주파 링크 DC-AC 컨버터)

  • Song, Y.J.;Park, S.I.;Jeong, H.G.;Han, S.B.;Jung, B.M.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.245-249
    • /
    • 2005
  • This paper describes a boost converter cascaded high frequency link direct dc-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from fuel cell is proposed. A new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented in detail.

  • PDF

Boost-Half Bridge Single Power Stage Configured PWM DC-DC Converter for Residential PEFC Stack Interface.

  • Khairy, Fathy;Choi, Kwang-Ju;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.132-134
    • /
    • 2006
  • This paper presents the design and implementation of 1 kW prototype DC-DC power converter with bridge voltage-doubler suitable for small scale PEM fuel cell system and its associated control scheme. The operation principle of this converter is described using some operating waveforms and the switching mode equivalent circuits based on simulation results and a detailed circuit operation analysis and soft-switching conditions.

  • PDF

THREE PHASE PWM AC-DC BOOST CONVERTER WITH UNITY POWER FACTOR (단위 역률로 동작하는 3상 PWM AC-DC BOOST콘버어터에 관한 연구)

  • Chun, Chang-Gun;Park, Sung-Jun;Kwon, Soon-Jae;Kim, Chul-U
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.397-399
    • /
    • 1994
  • In this parer, the development of input power factor and the harmonic distortion of line current were showed in the proposed three phase AC-DC converter. We identified that DC voltage in the output terminal has fast dynamic response and has nearly ripple. Moreover, the converter also possesses the regenerative capability which is useful for many applications. The switching frequency of this converter operated with constant in the range of 2KHZ. Finally, simulation and experiment results are presented.

  • PDF

Bidirectional ZVS PWM Sepic/Zeta Converter with Low Conduction Loss and Low Switching Loss (저스위칭손실 및 저도통손을 갖는 양방향 ZVS PWM Sepic/Zeta 컨버터)

  • Paeng, S.H.;Lee, B.C.;Choi, S.H.;Kim, I.D.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.549-551
    • /
    • 2005
  • Bidirectional DC/DC converters allows transfer of power between two dc sources, in either direction. Due to their ability to reverse the direction of flow of power, they are being increasingly used in many applications such as battery charger/dischargers, dc uninterruptible power supplies, electrical vehicle motor drives, aerospace power systems, telecom power supplies, etc. This paper proposes a new bidirectional Sepic/zeta converter. It has low swicthing loss and low conduction loss due to auxiliary communicated circuit and synchronous rectifier operation, respectively. Because of positive and buck/boost-like DC voltage transfer function(M=D/1-D), the proposed converter is very desirable for use in distributed power system . The proposed converter also has both transformerless version and transformer one.

  • PDF

The Current Control Methods Comparison of Boost Converter for Unity Power Factor (단위 역률 구현을 위한 부스트 컨버터의 전류제어방식 비교)

  • 최재동;성세진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.67-73
    • /
    • 1998
  • In this paper, the BPFC(Boost Power Factor Collection) method is proposed to improve power factor and harmonic distortion. This method not only reduces the current and voltage distortion but also the physical size and brings expected high efficiency through current control methods. And the proposed BPFC has a distinct difference by control methods. The BPFC method proposed in this study has the characteristic of the high power factor and low harmonic distortion, and the control method using the peak current control and PWM average current control is comparative.

  • PDF

Z-Source Four-Switch Three-Phase PWM Rectifier with Wide DC Output Voltage Control Region (넓은 직류 출력전압 제어영역을 갖는 Z-소스 Four-Switch 3상 PWM 정류기)

  • Zhu, Sha;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.275-276
    • /
    • 2013
  • In this paper, we proposed the Z-source four-switch three-phase rectifier. As we know, the conventional Four-Switch Three-Phase Rectifier(FSTPR) has advantages of the lower cost and less complex switching control. However, The conventional FSTPR can only either perform buck or boost operation, it can only attain the buck-boost operation by adding another DC-DC converter. In addition, besides its narrow output voltage region, distortion of the input current is serious either. Thus, we proposed the Z-source FSTPR which has buck-boost function and better input current waveform by applying the Z-impedance network to the conventional FSTPR. The validity of the proposed system was confirmed by experiments.

  • PDF

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Design of a High-Efficiency CMOS DC-DC Boost Converter Using a Current-Sensing Feedback Method (전류 감지 Feedback 기법을 사용한 고효율 CMOS DC-DC Boost 변환기의 설계)

  • Jung Kyung-Soo;Yang Hui-Kwan;Cha Sang-Hyun;Lim Jin-Up;Choi Joong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.23-30
    • /
    • 2006
  • This paper presents a design of a high-efficiency CMOS DC-DC boost converter using a current-sensing feedback method. High-precision current-sensing circuity is incorporated in order to sense the current flowing in the inductor, which determines the switching scheme of the pulse-width modulation. The external components or large chip area for the frequency compensation can be avoided while maintaining the stable operations of the converter. Various input/output voltage levels can be available through the external resistor strings. The designed DC-DC converter is fabricated in a 0.18-um CMOS technology with a thick-gate oxide option. The converter shows the maximum efficiency over 90% for the output voltage of 3.3V and load current larger than 200mA. The load regulation is 1.15% for the load current change of 100mA.

A Study on Stable Operation of Boost DC-DC Converter Circuit with 3-pole 2-zero Compensation Circuit (3-극점 2-영점 보상 회로가 적용된 승압형 DC-DC 컨버터 회로의 안정적 동작에 관한 연구)

  • Choi, Gun-Woo;Jung, Hai-Young;Lee, Seok-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.923-930
    • /
    • 2020
  • In modern society, various DC power supplies are required to operate the system circuits of various electric devices. A stable DC supply is essential for the normal operation of the circuit and the importance of the converter for this is very high. This study proposed a PWM DC-DC converter circuit that applied a 3-pole 2-zero voltage controller to a KY converter, a step-up DC-DC converter, to maintain a stable supply of output voltage regardless of load fluctuations. In order to prove the normal operation characteristics of the proposed converter circuit, a PSIM simulation and a circuit operation experiment on the PCB board were performed in comparison with the conventional converter circuit.