• Title/Summary/Keyword: PWM Inverter

Search Result 1,383, Processing Time 0.03 seconds

Boost Converter Modelling of Photovoltaic Conditioning System Considering Input Capacitor (입력 커패시턴스를 포함한 PV Boost Converter 모델링)

  • Choi, Ju-Yeop;Lee, Ki-Ok;Choy, Ick;Song, Seung-Ho;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.85-95
    • /
    • 2008
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.

Design of a Hub BLDC Motor Vector Control System for Patrol vehicle driving (경계형 차량 구동용 허브 BLDC 전동기 벡터제어 시스템 설계)

  • Park, Won-Seok;Son, Min-Ho;Lee, Min-Woo;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.380-383
    • /
    • 2014
  • Hub BLDC (Brushless Direct Current) motor is a multi-pole outer rotor-type high-efficiency electric motors and the Direct Drive Motor having permanent magnet rotor to drive shaft of the wheel, also called wheel-in motor. In this study, we design a speed controller with vector control technique using the dsPIC30f2010 16 bit micro-controller to drive Hub BLDC motor. Especially, we propose vector control method which reduce complex operation time, and design directly MOSFET inverter directly which gain high economics.

  • PDF

An Implementation of a Hall Sensor position compensation algorithm for the Muli-pole Type BLDC motor driving with the DSP(TMS320F28335). (DSP(TMS320F28335)를 이용하는 다극 BLDC 전동기 구동을 위한 홀센서 절대위치 보정 알고리즘 구현법)

  • Park, Jun-ho;Lim, Dong-gyun;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.391-394
    • /
    • 2014
  • In this paper, we introduce a method of determining the absolute position of the rotor for the vector control of Hall sensor type multi-pole BLDC motor using the DSP(TMS320F28335), and implement an algorithm to complement the problems of the conventional method. The switching method of the inverter for providing desired sinusoidal current to each phase of a motor, we adopt Space-Vector pulse width modulation method. In order to increase the speed range, Field-Weakness control method are used. In order to verify the proposed algorithm, we compare the value of Iqe, Ide and phase currents with the values before compensated.

  • PDF

A Three-phase Current-fed DC-DC Converter with Active Clamp (연료전지용 3상 전류형 능동클램프 DC-DC 컨버터)

  • Cha, Han-Ju;Choi, Jung-Wan;Yoon, Gi-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.456-464
    • /
    • 2007
  • This paper proposes a novel three-phase current-fed active clamp DC-DC converter for fuel cells. A single common active clamp branch is used to limit transient voltage across the three-phase full bridge and to realize zero-voltage switching(ZVS) in all switches. To apply for the power generation system current-fed type has been combined with the three-phase power conversion system. The proposed approach has the following advantages: an increase (by a factor of three) of input current and output voltage chopping frequencies; lower RMS current through the inverter switches with higher power transfer capability; reduction in size of reactive later components and the power conditioning system; better transformer utilization; increase of the system reliability. Therefore, the proposed three-phase current-fed active clamp DC-DC converter is appropriate for the boost type DC-DC converter for fuel cells and also applicable for the photovoltaic and battery charge system. The paper details the analysis, simulation and hardware implementation of the proposed system. Finally, experimental results with the proposed PWM strategy demonstrate the feasibility of the proposed scheme on a 500W prototype converter.

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

A PI Control Algorithm with Zero Static Misadjustment for Tracking the Harmonic Current of Three-Level APFs

  • He, Yingjie;Liu, Jinjun;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.175-182
    • /
    • 2014
  • Tracking harmonic current quickly and precisely is one of the keys to designing active power filters (APF). In the past, the current state feedback decoupling PI control was an effective means for three-phase systems in the current control of constant voltage constant frequency inverters and high frequency PWM reversible rectifiers. This paper analyzes in detail the limitation of the conventional PI conditioner in the APF application field and presents a novel PI control method. Canceling the delay of one sampling period and the misadjustment for tracking the harmonic current is the key problem of this PI control. In this PI control, the predictive output current value is obtained by a state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by a repetitive predictor synchronously. The repetitive predictor can achieve better predictions of the harmonic current. By this means, the misadjustment of the conventional PI control for tracking the harmonic current is cancelled. The experiment results with a three-level NPC APF indicate that the steady-state accuracy and dynamic response of this method are satisfying when the proposed control scheme is implemented.

Robust Double Deadbeat Control of Single-Phase UPS Inverter (단상 UPS 인버터의 강인한 2중 데드비트제어)

  • 박지호;허태원;안인모;이현우;정재륜;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.65-72
    • /
    • 2001
  • This paper deals with a novel full digital control of the single-phase PWM(Pulse Width Modulation) inviter for UPS(Uninterruptible Power Supp1y). The voltage and current of output filter capacitor as a state variable are the feedback control input. In the proposed scheme a double deadbeat control consisting of minor current control loop and major voltage control loop have been developed In addition, a second order deadbeat currents control which should be exactly equal to its reference in two sampling time without error and overshoot is proposed to remove the influence of the calculation time delay. The load current prediction is achieved to compensate the load disturbance. The simulation and experimental result shows that the proposed system offers an output voltage with THD(Total Harmonic Distortion) less than 5% at a full nonlinear load.

  • PDF

Speed Sensorless Control of Induction Motors in the Very tow Speed Region Considering the Secondary Resistance Identification (2차저항 동정을 고려한 유도전동기의 저속영역 속도센서리스 제어)

  • 황동일;이진국;정석권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • The speed control without a speed sensor is expected strongly to progress reliability, simplicity and cost performance of Induction Motor(I.M) systems. Also, it contributes to expansion of I.M systems into various industrial application fields. This paper investigates a novel speed sensorless control method of I.M considering the secondary resistance identification based on the transientless torque control technique. Especially, this paper aimed at the identification of the secondary resistance simultaneously with speed estimation superposing of sinusoidal flux wave to a constant flux value. Furthermore, the secondary flux with some frequency is controlled independently on torque control. The proposed speed estimation method is derived from a motor circuit equation theoretically and also it can be conducted easily by detecting primary motor currents and primary voltage commands at every sampling time. Some numerical simulations with the assumption of using a pulse width modulation(PWM) voltage source inverter are performed to verify the proposed method.

  • PDF

Estimation of Harmonics on Power System of AC Electric Railway (교류 전기철도 전력계통의 고조파 예측량 계산)

  • 송진호;황유모
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.68-79
    • /
    • 2003
  • We estimated harmonics on power system of AC railway based on quantitatively measured harmonics and investigated the need of facilities for harmonics reduction. In order to analysis harmonics which inflow into power system due to increase in collector voltages and harmonic currents generated from the train when the railway is in operation, the railway system Is sectioned into power supply, railway line, AT, sectioning Post and subsectioning post. For analysis of extension of currents resulting from the railway loads, PWM converter, VVVF inverter and the feeder system are modeled based on the dynamic node technique(DNT). In order to test the usefulness of the DNT for analysis of harmonic effects, the measured harmonic currents and harmonic magnification ratios at the S/K substation are compared with simulation results using DNT modelling, which include the results for two cases with and without filters for suppression of harmonic currents. When 8 cars(4M4T) are in operation, the total sum of harmonic currents resulting from the train at M and T phases, which inflow into the substation along with the railway line, is calculated. Using the harmonics analysis program for railway feeder system with these data, the total harmonic distortion factor(710) at the outgoing point of KEPCO substation is computed. The calculation shows that when the maximum THD at the receiving point of H/K substation was 0.0443% which is much lower than 1.5% which is the allowable value of KEPCO at 154kV as well as IEEE-519 above 132kV This result indicates that any measure for harmonics reduction in Incheon International Airport Railway is not needed.

Driving System of 7-Phase BLDC Motor Speed Control by Fuzzy Controller (Fuzzy 제어기를 이용한 7상 BLDC 전동기 속도제어 구동시스템)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1663-1668
    • /
    • 2017
  • A BLDC motor with higher number of phases has several advantages, compared to the conventional three-phase BLDC motors. It can reduce the commutation torque ripple and the iron loss without increasing the voltage per phase and increase the reliability and power density. Higher number of phases increase the torque-per-ampere ratio for the same machine volume and output power by widening the electrical conduction period. In this paper, the proposed seven-phase BLDC motor drive system is made into several functional modular blocks, so that it can be easily extended to other ac motor applications: back-EMF block, hysteresis current control block, pwm inverter block, phase current block, and speed/torque control block. Also in a system of BLDC motor drive, the PI controller has been widely used in the speed controller because of the simple implementation. To obtain a good speed response in a general drive system using the PI controller, the high bandwidth of a controller is established. therefore, in this paper, a Fuzzy controller is applied to the 7-phase BLDC motor drive system in order to improve the speed control performance. The Fuzzy controller is compared with a conventional PI controller through the experiment with respect to speed dynamic responses. These experimental results show that the Fuzzy controller of the 7-phase BLDC motor drive system is superior over the conventional PI controller. The algorithm using the Fuzzy controller can improve a comfortable ride in the field of high performance 7-phase BLDC motor drive applications.