• Title/Summary/Keyword: PWM Inverter

Search Result 1,383, Processing Time 0.032 seconds

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

High-Performance Control of Three-Phase Four-Wire DVR Systems using Feedback Linearization

  • Jeong, Seon-Yeong;Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.351-361
    • /
    • 2016
  • Power quality is a critical issue in distribution systems, where a dynamic voltage restorer (DVR) is commonly used to mitigate the voltage disturbances for loads. This paper deals with a nonlinear control for the three-phase four-wire (3P-4W) DVR under a grid voltage unbalance and nonlinear loads in the distribution system, where a novel control scheme based on the feedback linearization technique is proposed. Through feedback linearization, a nonlinear model of a DVR with a PWM voltage-source inverter (VSI) and LC filters is linearized. Then, the controller design of the linearized model is performed by applying the linear control theory, where the load voltages are kept constant by controlling the d-q-0 axis components of the DVR output voltages. To keep the load voltage unchanged, an in-phase compensation strategy is employed, where the load voltages are recovered to be the same as the previous voltage without a change in the magnitude. With this strategy, the performance of the DVR becomes faster and more stable even under unbalanced source voltages and nonlinear loads. The validity of the proposed control strategy has been verified by simulation and experimental results.

Medium Voltage Inverter System Using Decentralized Control (분산제어를 이용한 고압인버터 시스템)

  • Jang, H.K.;Kim, H.J.;Jeon, J.H.;Yun, H.M.;Na, S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.464-466
    • /
    • 2007
  • H-Bridge Multi-Level (HBML) 고압인버터는 저압의 반도체 소자를 사용하는 단상 H-Bridge 인버터로 구성 된 셀을 직렬로 연결함으로써 정현파에 가까운 고전압을 얻을 수 있고, 입 출력 고조파가 낮아서 필터가 필요 없는 토폴로지로 산업분야에서 사용이 확대되고 있다. 본 논문은 HBML 고압인버터의 마스터 제어기와 셀 제어기의 통신 하드웨어를 병렬로 구성하여서 하나의 전압지령 값과 Angle 값으로 셀에서 PWM을 구현 할 수 있는 분산제어 방식을 제안한다. 이 방식에서 셀 제어기가 전압, 전류, 주파수, 보호기능, 통신감시 정보 등 셀 제어의 대부분을 담당함으로써 마스터 제어기의 부담을 줄이고, 따라서 신호선의 개수를 줄일 수 있다. 또 통신하드웨어의 종단에 마스터 제어기를 연결만 하면 마스터제어기의 2중화가 가능하므로 사용하고 있던 마스터 제어기의 고장 발생 시에 대체하여 사용할 수 있으므로 시스템의 안정성 향상에 도움을 준다. 선간전압 33레벨로 구성된 HBML 고압인버터 시험을 통해 제안된 방식의 타당성과 신뢰성을 검증한다.

  • PDF

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF

A Wind Turbine Simulator for Doubly-Fed Induction-type Generator with Automatic Operation Mode Change during Wind Speed Variation (가변 풍속시 운전모드 절환을 고려한 이중여자 유도형 풍력발전기의 시뮬레이터)

  • Song, Seung-Ho;Sim, Dong-Joon;Jeong, Byoung-Chang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.349-360
    • /
    • 2006
  • Controller for doubly-fed induction-type wind generation system should be designed with mechanical power on blade. The controller in this paper consists of upper level controller and lower level controller. The upper level controller determines operating modes according to mechanical input power and calculates proper reference values. There are 4 operating modes - minimum speed control, variable torque control, torque limit control and idle mode. The lower level controller performs current regulated PWM control of rotor-side converter and grid-side inverter. A wind turbine simulator is implemented using doubly-fed induction-type generator and DSP based back-to-back converter to verify the performance of designed controller experimentally.

Implementation Method for an Induction Motor Drive System Using Network Sensors (네트워크 센서를 이용한 유도전동기 구동시스템 구현 기법)

  • Kim, Dong-Sik;Chun, Tae-Won;Ahn, Jung-Ryol;Kim, Heung-Gun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.563-569
    • /
    • 2006
  • In this paper, the system to control the PWM inverter-induction motor drive system including ac current sensors, voltage sensors, and an encoder through the network is developed. Although the network-based control for an induction motor drive system is becoming increasingly important at factory automations, there will inevitably be time delay from the sensors to the motor control system, which may cause the instability. The algorithm to minimize the efforts for network induced time delay of sensor data is proposed, using both the synchronous signal and the method for estimating sensor data. The experiments with DSP are carried out in order to verify proposed algorithms.

Design and Control Method for Critical Load Supply Equipment using MCFC Electricity Generation Systems (대용량 MCFC 발전시스템을 이용한 비상부하 전력 공급 장치 설계 및 제어방법)

  • Kim, Dong-Hee;Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Kawk, Cheol-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.20-29
    • /
    • 2011
  • This paper proposes critical load following back-up system using MCFC stack. This system enables MCFC generation system to supply power to critical load without UPS and to generate rated power under grid fault state. This back-up system includes 'Load Leveler' that is connected with 3-phase inverter and is controlled by additional algorithm that includes critical load following. The proposed system and algorithm are verified by computer simulation based on 5kW system.

Swapping switching pattern for improving modular characteristics and ensuring the same aging of cascaded H-bridge multilevel inverter (Cascaded H-bridge 멀티레벨인버터의 모듈화 특성 개선과 동일 수명 보장을 위한 스와핑 스위칭 패턴)

  • Kim, Sun pil;Choi, Jin-sing;Kim, han-tae;Kang, Feel-soon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.59-60
    • /
    • 2012
  • Cascaded H-bridge 멀티레벨인버터의 스위칭 패턴을 기본파 생성을 위한 저주파 동작과 파형 개선 목적의 고주파 PWM 스위칭 패턴으로 구분하여 스위칭 손실을 감소시킬 수 있지만 입력단의 DC 독립전압원은 각 H-bridge 모듈이 담당하는 출력전압의 레벨에 따라 용량의 차이가 발생한다. 이는 각 H-Bridge 모듈 스위치의 전류 스트레스 차이를 의미하며, 이로 인해 H-bridge 모듈별 수명 차이를 발생시킨다. 본 논문에서는 용량 창이에 따른 모듈 특성 개선과 인버터 수명 문제를 해결하기 위하여 기존의 다중 반송파 정현 펄스폭 변조방식에 스와핑 스위칭 방법을 적용하여 Cascaded H-bridge 멀티레벨인버터에 적용함으로써 스위칭 손실 개선과 함께 각 H-bridge 별 담당 부하 전력을 동일하게 하여 동일 전류 정격 스위치의 사용을 가능하게 한다. 제안된 스와핑 스위칭 패턴을 PD, POD, APOD방식으로 구현하고 이론적 분석과 시뮬레이션을 통해 타당성을 검증한다.

  • PDF

Field Weakening Control of IPMSM Using Current Feedback (전류궤환에 의한 영구자석 동기 전동기의 약계자 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Jong-Koo;Choi, Weom-Beom;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.347-349
    • /
    • 1995
  • This paper describes current controlled PWM technique of IPM synchronous motors for a wide variety of speed control applications. They are however limited in their ability to operate in the power limited regime where the available torque is reduced as the speed is increased above its base value. This paper reviews the operation of the IPMSM drives when they are constrained to be within the permissible envelope of maximum inverter voltage and current to produce the rated power and to provide this with the highest attainable rotor speed. This paper proposes a new field-weakening control algorithm using phase current feedback to improve the torque characteristics and to reduce the torque ripple of IPMSM in the constant power region. The improved torque characteristics of speed control strategy with current feedback control algorithm is analyzed and the performance is investigated by the computer simulation results.

  • PDF

A study on the power conversion system using Dye-Sensitized Solar cell (DSC를 활용한 상용전력변환 시스템에 관한 연구)

  • Kim, Jin-Young;Park, Sung-June;Park, Hae-Young;Kim, Woo-Sung;Kim, Hwi-Young;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.195-198
    • /
    • 2006
  • The technology of Solar Power conversion System is defined as a solar cell that changes the sol ar energy into the direct electric energy, power conversion and control technology that convert the dc power into ac power The solar cell module, power conversion, and a control part in component parts consisting a solar power conversion system have influence on its performance. The roles of power conversion and a control part supply the direct current generated by solar cell module for a load with high efficiency as conveniently as possible in this study, the power conversion systen that can generate solar power using DSC module was developed and its characteristics was experimented. The characteristics of the DSC power conversion system including MOSFET and DSP micro processor, high speed devices, was simulated using Psim. According to the results, converter and inverter was manufactured in detail and the performance characteristics were studied.

  • PDF