• 제목/요약/키워드: PWM AC/AC converter

Search Result 371, Processing Time 0.025 seconds

A New PWM Strategy for reducing Common Mode Voltage in PWM boost Converter/lnverter Fed ac Motor Drives. (PWM 승압형 컨버터/인버터를 시스템에서 커먼 모드 전압 저감을 위한 새로운 PWM 기법)

  • Lee, Hyeoun-Dong;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2484-2486
    • /
    • 1999
  • 본 논문에서는 PWM 승압형 컨버터/인버터를 사용한 교류전동기 구동시스템에서 커먼 모드 전압의 크기를 dc 버스 전압 1/3이하로 제한시키는 새로운 공간전압벡터 PWM 기법을 제안한다. Dc 버스 전압의 2/3에 해당하는 커먼 모드 전압 펄스가 발생하는 경우에 대하여 고찰하고 각각의 경우에 대한 인버터 스위칭 시점의 이동을 통한 제거 방법을 제안한다. 제안된 방법은 부가의 하드웨어를 요구하지 않고 소프트웨어적으로 손쉽게 구현될 수 있으며, 전력변환기의 제어성능에 영향을 미치지 않는다는 장점을 가진다.

  • PDF

A Study on the Modularization of LED Driver for Illumination Using a Fly-Back Converter (플라이백 컨버터를 이용한 조명용 LED Driver의 모듈화 연구)

  • Choi, Jin-Bong;Kim, Kwan-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.504-513
    • /
    • 2009
  • This paper proposes the new type LED driver modularization for illumination LED driver. The proposed LED driver circuit insulates a hot GND of AC input power and a cold GND of LED driver part by using a fly-back converter. In order to control easily the current of the LED, the fly-back converter is operated in the discontinuous mode with excellent dynamic characteristics, and the characteristics of the LED are verified after the closed loop control is performed using a KIA2431. The LED driver module allows the wide AC power input ranges and realizes the burst dimming function which directly regulates a PWM control IC. This paper describes the operation principle of the LED driver module and it is proved the usefulness through the real model with experimentation. Besides, this paper proposes the multi-channel LED driver which the miniaturized and modularized LED driver module are connected by parallel, and verified its propriety by experiments.

Design and Reliability Evaluation of 5-V output AC-DC Power Supply Module for Electronic Home Appliances (가전기기용 직류전원 모듈 설계 및 신뢰성 특성 해석)

  • Mo, Young-Sea;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.504-510
    • /
    • 2017
  • This paper presents an AC-DC power module design and evaluates its efficiency and reliability when used for electronics appliances. This power module consists of a PWM control IC, power MOSFETs, a transformer and several passive devices. The module was tested at an input voltage of 220V (RMS) (frequency 60 Hz). A test was conducted in order to evaluate the operation and power efficiency of the module, as well as the reliability of its protection functions, such as its over-current protection (OVP), overvoltage protection (OVP) and electromagnetic interference (EMI) properties. Especially, we evaluated the thermal shut-down protection (TSP) function in order to assure the operation of the module under high temperature conditions. The efficiency and reliability measurement results showed that at an output voltage of 5 V, the module had a ripple voltage of 200 mV, power efficiency of 73 % and maximum temperature of $80^{\circ}C$ and it had the ability to withstand a stimulus of high input voltage of 4.2 kV during 60 seconds.

Double Two Switch Forward Transformer-Linked Soft-Switching PWM DC-DC Power Converter with Tapped Inductor Filters

  • Moisseev Serguei;Koudriavtsev Oleg;Hiraki Eiji;Nakamura Mantaro;Nakaoka Mutsuo;Hamada Satoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a novel circuit topology of the double two-switch forward type high frequency transformer linked soft-switching PWM DC-DC power converter with tapped inductor filters that can operate under a condition of the low peak voltage stress across the power semiconductor devices and lowered peak current stress through the transformer for some high power applications. This circuit topology of an interleaved two-switch forward soft-switching power converter is proposed in the order to minimize an idle circulating current due to the tapped inductor filter without of any additional active auxiliary resonant-assisted snubber circuits, such as active resonant DC link snubbers and AC link snubbers, active resonant commutation leg link snubbers. The unique advantages of this power converter are less power circuit components and power semiconductor devices, constant frequency PWM scheme, cost effective configuration and wider soft-switching PWM operation range under PWM power regulations load variations. The practical effectiveness of the proposed soft-switching converter circuit topology is tested by simulations and is proved by experimental results received from the 500W-100kHz breadboard setup.

  • PDF

A Study on DC Traction Power Supply System Using PWM Converter (PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구)

  • Kim, Joorak;Park, Chang-Reung;Park, Kijun;Kim, Joo-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.

A Feasibility Design of PEMFC Parallel Operation for a Fuel Cell Generation System

  • Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.408-421
    • /
    • 2008
  • In this paper, the parallel operation for a FC generation system is introduced and designed in order to increase the capacity for the distributed generation of a proton exchange membrane fuel cell (PEMFC) system. The equipment is the type that is used by parallel operated PEMFC generation systems which have two PEMFC systems, two dc/dc boost converters with shared dc link, and a grid-connected dc/ac inverter for embedded generation. The system requirement for the purpose of parallel operated generation using PEMFC system is also described. Aspects related to the mechanical (MBOP) and electrical (EBOP) component, size, and system complexity of the distributed generation system, it is explained in order to design an optimal distributed generation system using PEMFC. The optimal controller design for the parallel operation of the converter is suggested and informative simulations and experimental results are provided.

Single-Phase Inverter System Using New Modulation Method (새로운 변조방식을 사용한 단상 인버터 시스템)

  • Lee, Hyoung-Ju;Won, Hwa-Young;Lim, Seung-Beom;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.29-36
    • /
    • 2010
  • In this paper, we propose a single-phase inverter system using new modulation method. The proposed system is composed of a buck-boost converter and an inverter and controlled by PWAM scheme. PWAM method is a new modulation method which is the incorporation of PWM(Pulse Width Modulation) and PAM(Pulse Amplitude Modulation) methods. The DC voltage which is the input voltage of buck-boost converter is converted into a variable DC voltage by buck-boost converter. Also, the variable DC voltage which is the output voltage of buck-boost converter is converted into a sinusoidal AC voltage by inverter. The input voltage of inverter is processed by PWM switching in PWM section and bypassed in PAM section. By using PWAM method, switching action is not existed in PAM section and thus the times of switching is reduced. As a result, the switching loss can be reduced.

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

A Sinusoidal Input Current Multi-Level Converter Using Transformer (변압기를 사용한 정현파 입력전류 Multi-Level Converter)

  • Kim, C.S.;Lee, H.W.;Suh, K.Y.;Chun, J.H.;Han, H.D.;Park, W.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.250-253
    • /
    • 2001
  • This paper is proposed a sinusoidal input voltage Multi-level AC-DC Converter using transformer. In this paper Multi-level PWM Control converter which controls input current by combining buck Converters together to improve input current characteristic, and confirmed its validity throughout simulation and experiment. This method, which is multiplying and duplicating output of converter of equal capacity, is able to control unit power factor of input current, reduce the problem caused by high frequency switching, and apply to high power converter because filter is not necessary.

  • PDF

High Efficiency Resonant Asymmetrical Half-Bridge Flyback Converter (고효율 공진형 비대칭 하프브리지 플라이백컨버터)

  • Jeong, Gang-Youl;Yoo, Doo-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.81-94
    • /
    • 2010
  • This paper presents a high efficiency resonant asymmetrical half-bridge flyback converter. The primary half-bridge circuit of the converter operates by a soft-switching type using the asymmetrical pulse-width modulation (PWM) method with the resonant capacitance and transformer leakage inductance. The secondary flyback circuit of the proposed converter utilizes a synchronous rectifier, which operates by a new voltage-driven method with a simple drive circuit. Thus the proposed converter improves the total efficiency. This paper explains the operational principle of the proposed converter by each mode and shows the converter design consideration and a design example for the prototype converter, respectively. After that, the proposed simple driving technique of the synchronous rectifier by a voltage-driven method is explained, briefly. The designed prototype converter has wide input voltage (AC $V_{in,rms}$=75~265[V]), 5[V] DC output voltage, and 100[W] output power. To verify the excellent performance of the proposed converter, the designed prototype is implemented and experimented. The good performance of the proposed converter is shown through the experimental results.