• Title/Summary/Keyword: PWHT

Search Result 146, Processing Time 0.025 seconds

Effect of Shot Peening on the Fatigue of SS400 Weldments (SS400 용접부의 피로강도에 미치는 쇼트 피닝의 영향)

  • Kim, Jin-Hern;Goo, Byeong-Choon;Kim, Hyun-Gyu;Cheong, Seong-Kyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.895-901
    • /
    • 2009
  • Fatigue fracture of the welded joints of bogie frames is one of unsolved problems. To improve the fatigue strength of the welded joints, various techniques have been applied. In this study, we have investigated the effect of shot peening on the fatigue characteristics of SS400 welded specimens. The fatigue lives of four kinds of welded specimens were examined; welded, PWHT, shot peened, and shot peened after PWHT. The results of the fatigue tests show that the fatigue limit of the shot-peened specimens is higher than that of the welded specimens, and the PWHT specimens have a lower fatigue limit than the welded specimens. It was found that shot peening is a very effective method to improve the fatigue strength of SS400 welded joints.

Study on Corrosion Characteristics and Stress Corrosion Cracking of the Weldment for HT-60 Steel in Synthetic Seawater

  • Na, Eui-Gyun;Koh, Seung-Ki;Oh, Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.152-158
    • /
    • 2000
  • The contents of this paper include the evaluation of corrosion characteristics and the behaviour of stress corrosion cracking (SCC) for the weldment and post weld heat treatment (PWHT) specimen and parent of HT -60 steel using a slow strain rate test (SSRT) in synthetic seawater. Corrosion characteristics were obtained from the polarization curves by potentiostat, and SCC phenomena were evaluated through the parameters such as reduction of area and time to failure by comparing the experimental results in corrosive environment with those obtained in air. Corrosion rate of the weldment was the fastest, followed by parent and PWHT specimen. SCC phenomena between the weldment of HT-60 steel and synthetic seawater were shown. Besides, SCC was dependent upon the pulling speed greatly. Maximum severity of SCC was obtained at a speed of $10^{-6}mm/min$, whereas SCC could not be seen almost at $10^{-4}mm/min$. The resistance to SCC for PWHT specimen was improved considerably compared that of the weldment at $10^{-6}mm/min$. In case of SCC failure, it was verified from SEM examination that brittle mode and lots of pits could be seen at the fractured region near the surface of the specimen.

  • PDF

A Study on the Fatigue Strength Improvement of Welded Parts of SS400 Using the Shot Peening and PWHT Technique for Subway Cars (쇼트피닝과 후열처리에 의한 전동차용 SS400 용접부 피로강도 개선연구)

  • Kim, Jin-Hern;Kim, Hyun-Gyu;Goo, Byeong-Choon;Cheong, Seong-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.65-70
    • /
    • 2007
  • Welding is the most commonly used method to produce bogie and carbody of Electrical Multiple Units(EMU), because it increases the strength and lowers the weight of EMU. Since bogies are constantly exposed to repeated reacting load during acceleration and deceleration, it is also true that crack normally occurs at welding parts. In this study, we have investigated the fatigue strength of SS400 on welded parts in order to find efficiency of treatment after welding by shot peening and Post-Weld heat treatment(PWHT) with butt welded specimens. The results of fatigue test indicate that the measurement of base material specimen is 236MPa, welded specimen is 132MPa and the specimen of PWHT is 107MPa approximately. We concluded that the measurement of welded specimen and PWHT is approximately 44 and 54 percents lower than the base material specimen, respectively. Another finding is that the peened specimen is approximately 23 and 61 percents higher than the base material specimen in terms of the fatigue in strength of specimens.

  • PDF

Evaluation on the Characteristics of Stress Corrosion Cracking for the Weldment of HT-60 Steel under Applied Potentials (인가전위 하에서 HT-60강 용접부의 SCC특성 평가)

  • Na, Ui-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.896-903
    • /
    • 2002
  • The susceptibility of SCC for the weldment and PWHT specimens of HT-60 steel was evaluated using a slow strain rate method under applied potential by means of the potentiostat in synthetic seawater. In case of the parent, anodic polarization voltage was inappropriate in elongating the time to failure(TTF). -0.8V corresponding to cathodic protection range is most effective in improving the SCC resistance against corrosive environment. In case of the weldment, the values of reduction of area(ROA) and TTF at -0.68V corresponding to cathodic polarization value were 45.2% and 715,809sec which were the largest and longest life among other applied potentials. Those were vise versa at -1.1V. In case of the PWHT specimens, TTF and ROA at -0.68V was longest and largest like the weldment. Besides, PWHT is effective in prolonging the time to failure of the welded off-shore structure due to softening of effect. Regardless of the weldment and PWHT specimen, as corrosion rate gets higher, TTF becomes shorter and deformation behaviour for the weldment and PWHT specimen at -1.1V was shown to be irregular. Finally, it was found that specimens showed brittle fracture at -1.1V, but more ductile fracture accompanying the micro-cracks at applied potential of -0.68V.

Effects of Post Weld Heat Treatment on Microstructures of Alloy 617 and 263 Welds for Turbines of HSC Power Plants (HSC발전소 터빈용 초내열합금 Alloy 617 및 263 용접부의 미세조직에 미치는 후열처리의 영향)

  • Kim, Jeong Kil;Shim, Deog Nam;Park, Hae Ji
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.52-60
    • /
    • 2016
  • Recently nickel based superalloys are extensively being regarded as the materials for the steam turbine parts for hyper super critical (HSC) power plants working at the temperature over $700^{\circ}C$, since the materials have excellent strength and corrosion resistance in high temperature. In this paper, alloy 617 of solution strengthened material and alloy 263 of ${\gamma}^{\prime}$-precipitation strengthened material were prepared as the testing materials for HSC plants each other. Post weld heat treatment (PWHT) was conducted with the gas tungsten arc (GTA) welded specimens. The microstructure of the base metals and weld metals were investigated with Electron Probe Micro-Analysis (EPMA) and Scanning Transmission Electron Microscope (STEM). The experimental results revealed that Ti-Mo carbides were formed in both of the base metals and segregation of Co and Mo in both of the weld metals before PWHT and PWHT leaded to precipitation of various carbides such as Mo carbides in the specimens. Furthermore, fine ${\gamma}^{\prime}$ particles, that were not precipitated in the specimens before PWHT, were observed in base metal as well as in the weld metal of alloy 263 after PWHT.

Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars (SF45와 SM45C의 마찰용접 최적화에 따른 회전굽힘피로 특성)

  • Kong, Yu Sik;Park, Young Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.219-224
    • /
    • 2017
  • A study on dissimilar friction-welded joints was performed for cam shaft applications using solid bar samples, 20mm in diameter, of forging steel(SF45) and carbon steel(SM45C). The main parameters of friction welding such as tensile tests, Vickers hardness surveys of the bond of area, the heat affected zone (HAZ), and the observation of microstructure were investigated to ensure a good quality of friction welding through visual observations. The specimens were tested as-welded and post weld heat treatment(PWHT). This paper deals with optimizing the welding conditions and analyzing various rotary bending fatigue test(RBFT) properties about heat-treated base metal(BM), as-welded and PWHT. Consequently, two materials for friction welding are strongly mixed with a well-combined structure of micro-particles without any molten material, particle growth, or any defect. Moreover, the fatigue limit of BM(SF45) and PWHT for the RBFT were observed as 180MPa and 250MPa, respectively. It was confirmed that the PWHT causes approximately 40% improvement in the fatigue limit when compared to the BM(SF45).

A Study on the Post-Weld Heat Treatment Effect to Mechanical Properties and Hydrogen Embrittlement for Heating Affected Zone of a RE 36 Steel

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Ki-Joon;Kim, Jin-Gyeong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.283-288
    • /
    • 2003
  • The cathodic protection method is being widely used in marine structural steel, however a high tensile steel like RE 36 steel for marine structural steel is easy to get hydrogen embrittlement due to over protection during cathodic protection as well as preferential corrosion of HAZ(Heating Affected Zone) part. In this paper, corrosion resistance and mechanical properties such as elongation and hydrogen embrittlement were investigated with not only in terms of electrochemical view but also SSRT(Slow Strain Rate Test) method with applied constant cathodic potential, analysis of SEM fractography in case of both As-welded and PWHT(Post-Weld Heat Treatment) of $550^{\circ}C$. The best effect for corrosion resistance was apparently indicated at PWHT of $550^{\circ}C$ and elongation was increased with PWHT of $550^{\circ}C$ than that of As-welded condition. On the other hand. Elongation was decreased with applied potential shifting to low potential direction which may be caused by hydrogen embrittlement, however the susceptibility of hydrogen embrittlement was decreased with PWHT of $550^{\circ}C$ than that of As-welded condition and Q.C(quasi cleavage) fracture mode was also observed significantly according to increasing of susceptibility of hydrogen embrittlement. Eventually it is suggested that an optimum cathodic protection potential range not causing hydrogen embrittlernent is from -770 mV(SCE) to -850 mV(SCE) in As-welded condition while is from -770 mV(SCE) to -875 mV(SCE) in PWHT of $550^{\circ}C$.

Evaluation of Microstructure and Mechanical Properties on Post-Weld Heat Treatment in the Heat Affected Zone of SA508 Gr.4N Ni-Mo-Cr Low Alloy Steel for Reactor Pressure Vessel (원자로압력용기용 SA508 Gr.4N Ni-Mo-Cr계 저합금강 용접열영향부의 용접후열처리에 따른 미세조직과 기계적 특성 평가)

  • Lee, Yoon-Sun;Kim, Min-Chul;Lee, Bong-Sang;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.139-146
    • /
    • 2009
  • The heat-affected zone (HAZ) of SA508 Gr.4N Ni-Mo-Cr low alloy steel, which has higher Ni and Cr contents than SA508 Gr.3 Mn-Mo-Ni low alloy steel, was investigated on the microstructure and mechanical properties. The HAZ was categorized into seven characteristic zones (CGCG, FGCG, ICCG, SCCG, FGFG, ICIC and SCSC-HAZ) according to the peak temperature from the thermal cycle experienced during multi-pass welding. Post Weld Heat Treatment (PWHT) was conducted in the temperature range of $550{\sim}610^{\circ}C$ for 30 hours to evaluate the effect of PWHT conditions on the microstructure and mechanical properties. Before PWHT, CGHAZ and FGFGHAZ showed high yield strength (YS) ranging from 1000 to 1250 MPa, while YS of SCSCHAZ decreased from 607 MPa (observed for base metal) to 501 MPa. The Charpy impact energies of sub-HAZs fell below 100J at $-29^{\circ}C$, except in the SCSCHAZ. By applying PWHT to sub-HAZ specimens, YS decreased as the PWHT temperature increased. In the case of CGHAZs and FGFGHAZ heat-treated at $610^{\circ}C$, YS dropped drastically to the range of 654~686 MPa. From the Charpy impact test, the upper-shelf energy (USE) increased to approximately 250J and Index temperature ($T_{68J}$) decreased below $-50^{\circ}C$. Specifically, in FGFG, ICIC and SCSC-HAZ, $T_{68J}$ was below -110, which was lower than the case of base metal.

Corrosion Behaviors of Laser-welded Super Duplex Stainless Steel(UNS S32506) Tube with Post-Weld Heat Treatment Conditions (슈퍼 듀플렉스 스테인리스강(UNS S32506) 레이저 조관용접 튜브의 용접 후 열처리에 따른 부식거동)

  • Cho, Dong Min;Park, Jin-seong;Hong, Seung Gab;Hwang, Joong-Ki;Kim, Sung Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.102-111
    • /
    • 2021
  • The corrosion behaviors of laser-welded super duplex stainless steel tubes with post-weld heat treatment(PWHT) conditions(950, 1000, 1050, 1100 ℃ for 5 and 30 min) were evaluated by electrochemical potentiodynamic polarization and critical pitting temperature measurements. This study showed that the critical metallurgical factors affecting the degradation of corrosion resistance of a steel tube in as-welded condition were the unbalanced phase fraction(ferrite:austenite = 94:4), Cr2N precipitation, and phase transformation from the austenite phase to ɛ-martensite(via stress-induced phase transformation). The improvement in the corrosion resistance of the welded specimen depends greatly on the PWHT conditions. The specimens after PWHT conducted below 1000 ℃ showed inferior corrosion resistance, caused by precipitation of the sigma phase enriched with Cr and Mo. At 1100 ℃ for a longer duration in PWHT, the ferrite phase grows, and its fraction increases, leading to an unbalanced phase fraction in the microstructure. As a result, pitting can be initiated primarily at the interface between the ferrite/austenite phase, particularly in base metal.

Weldability of 12% Cr steel by thermally simulated HAZ (열 영향부의 시물레이션에 의한 12% Cr강의 용접성 평가)

  • 김재도
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.40-46
    • /
    • 1986
  • This investigation is concerned with the toughness and microstructure of manneristically simulated HAZ in 12% Cr steel. Unnotched specimens were subjected to weld thermal cycles a weld simulator. The parameters-peak temperatures, cooling rate, influence of PWHT and plastic deformation were considered. After weld simulation, the specimens were heat-treated, V-notched and impact tested. An optical metallographic examination was performed to correlate the HAZ toughness with microstructure. Also a fractographic examination was done to obtain information on the fracture mode. The toughness of the coarse grained zone and the part of HAZ subjected to a peak temperature range 700-800.deg. C are lower than the other parts. However, they are still high enough. The double PWHT cycle could not improve the HAZ toughness in present study. However, if the first PWHT is conducted before the work piece is cooled below $M_f$, it is expected that the double PWHA may be beneficial to the toughness of the HAZ. It is also expected that martensitic welding can be used on production welds.

  • PDF