• Title/Summary/Keyword: PWE

Search Result 41, Processing Time 0.022 seconds

Evaluation on the Applicability as Filler materials of Ni-Based Super Alloying Nano Size Powder by Pulsed Wire Evaporation(PWE) Method (전기폭발법으로 제조된 니켈기 초내열합금 나노분말의 용가재로의 응용가능성에 관한 평가)

  • Kim, Gyeong-Ho;Lee, Min-Gu;Kim, Gwang-Ho;Lee, Chang-Gyu;Kim, Heung-Hui
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.168-170
    • /
    • 2005
  • Nickel base brazes containing boron and silicon as melting point depressants are used extensively in the joining and repair of hot-section components in next generation nuclear reactor and aero-engine. Therefore, the present study has investigated the preliminary applicability of nickel based alloying nano powders. Nano Ni-based alloying powders synthesized by Pulsed Wire Evaporation (PWE) method. It's powder morphology and phase transformation temperature were analyzed by scanning electron microscopy, transmission electron microscopy, and differential scanning calorimeter(DSC). The powder particle size was approximately 10${\sim}$100nm and exhibits a quite even equiaxed shape. The results of DSC measurement show that both the nano Inconel 625 nano powder and Inconel 718 nano powder presents similar liquidus temperatures approximately $1373^{\circ}C$ and $1380^{\circ}C$ respectively.

  • PDF

Nanostructures and Mechanical Properties of Copper Nano Powder Compacted by Magnetic Pulsed Compaction (MPC) Method (Magnetic Pulsed Compaction(MPC)법으로 성형된 Cu 나노 분말 성형체의 미세구조 및 기계적 특성)

  • 이근희;김민정;김경호;이창규;김흥회
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.124-132
    • /
    • 2002
  • Nano Cu powders, synthesized by Pulsed Wire Evaporation (PWE) method, have been compacted by Magnetic Pulsed Cojpaction(MPC) method. The microstructure and mechanical properties were analyzed. The optimal condition for proper mechanical properties with nanostructure was found. Both pure nano Cu powders and passivated nano Cu powders were compacted, and the effect of passivated layer on the mechanical properties was investigated. The compacts by MPC, which had ultra-fine and uniform nanostructure, showed higher density of 95% of theoretical density than that of static compaction. The pur and passivated Cu compacted at $300^{\circ}C$ exhibited maximum hardnesses of 248 and 260 Hv, respectively. The wear resistance of those compacts corresponded to the hardness.

Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part I. Effect of Wire Diameter and Applied Voltage (액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 1. 합금 wire의 직경 및 인가 전압의 영향)

  • Ryu, Ho-Jin;Lee, Yong-Heui;Son, Kwang-Ug;Kong, Young-Min;Kim, Jin-Chun;Kim, Byoung-Kee;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.105-111
    • /
    • 2011
  • This study investigated the effect of wire diameter and applied voltage on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid, for high temperature oxidation-resistant metallic porous body for high temperature particulate matter (or soot) filter system. Three different diameter (0.1, 0.2, and 0.3 mm) of alloy wire and various applied voltages from 0.5 to 3.0 kV were main variables in PWE process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. It was controlled the number of explosion events, since evaporated and condensed nano-particles were coalesced to micron-sized secondary particles, when exceeded to the specific number of explosion events, which were not suitable for metallic porous body preparation. As the diameter of alloy wire increased, the voltage for electrical explosion increased and the size of primary particle decreased.

Synthesis and Characteristics of CU/CUO Nanopowders by Pulsed Wire Evaporativn(PWE) Method (전기폭발법에 의한 CU/CUO 나노분말의 제조 및 분말특성)

  • Maeng, D.Y.;Rhee, C.K.;Lee, N.H.;Park, J.H.;Kim, W.W.;Lee, E.G.
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.941-946
    • /
    • 2002
  • Both Cu and Cu-oxide nanopowders have great potential as conductive paste, solid lubricant, effective catalysts and super conducting materials because of their unique properties compared with those of commercial micro-sized ones. In this study, Cu and Cu-oxide nanopowders were prepared by Pulsed Wire Evaporation (PWE) method which has been very useful for producing nanometer-sized metal, alloy and ceramic powders. In this process, the metal wire is explosively converted into ultrafine particles under high electric pulse current (between $10^4$ and $10^{ 6}$ $A/mm^2$) within a micro second time. To prevent full oxidations of Cu powder, the surface of powder has been slightly passivated with thin CuO layer. X-ray diffraction analysis has shown that pure Cu nanopowders were obtained at $N_2$ atmosphere. As the oxygen partial pressure increased in $N_2$ atmosphere, the gradual phase transformation occurred from Cu to $Cu_2$O and finally CuO nanopowders. The spherical Cu nanopowders had a uniform size distribution of about 100nm in diameter. The Cu-oxide nanopowders were less than 70nm with sphere-like shape and their mean particle size was 54nm. Smaller size of Cu-oxide nanopowders compared with that of the Cu nanopowders results from the secondary explosion of Cu nanopowders at oxygen atmosphere. Thin passivated oxygen layer on the Cu surface has been proved by XPS and HRPD.

Study of Mössbauer Spectroscopy for Iron Oxides Synthesized by Pulsed Wire Evaporation (PEW) (전기선폭발법으로 제조된 철산화물의 뫼스바우어분광연구)

  • Uhm, Young Rang
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.5
    • /
    • pp.135-139
    • /
    • 2014
  • Iron-oxide nanopowders were synthesized by a pulsed wire evaporation (PWE) in various ambient gas conditions. SEM measurement indicates that the spherical iron nanoparticles are about 50 nm in diameter. The phase analysis for the produced iron-oxide powders was systematically investigated by using $M\ddot{o}ssbauer$ spectra and the results show that classified phases of $Fe_2O_3$ and $Fe_3O_4$ can be controlled by regulating the oxygen concentration in the mixed gas during the PWE process. A quadrupole line on the center of $M\ddot{o}ssbauer$ spectrum represents the superparamagnetic phase of 12 % from ${\gamma}-Fe_2O_3$ phase.

A Study on Level of Service of Pedestrian Facility in Transfer Stations at Urban Railroad (도시철도 환승역의 환승보행시설의 서비스수준에 관한 연구)

  • Jang, Seong-Yong;Han, Sung-Yoeb;Kim, Si-Gon
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.339-348
    • /
    • 2010
  • The government continues to make efforts to improve effectiveness, integration and connectivity of public transportation systems. But there have been only a few studies about it. This paper addresses the quality evaluation of pedestrian facility service in transfer stations at urban railroad. LOS (Level Of Service) model of urban railroad by facility based on the body ellipse and density recalculated considering the recent Korean body standard and the suggested Pedestrian Moving Equivalent (PME) and Pedestrian Waiting Equivalent (PWE). For LOS model for the ticket booths and ticket vending machines, queuing theory has been applied to determine LOS of Pedestrians. And the importance weights among the pedestrian facilities is obtained by applying AHP analysis. Lastly, this paper shows and discusses the evaluation results of overall LOS of pedestrian facilities of five urban railroad transfer stations in Seoul.

The Effect of Using Nano NiO Powder Made by Pulsed Wire Evaporation (PWE) Method on SOFC Anode Functional Layer (Pulsed Wire Evaporation(PWE) Method으로 제조된 나노 NiO 분말의 SOFC 연료극 기능성층으로의 적용)

  • Kim, Hae-Won;Kim, Dong-Ju;Park, Seok-Joo;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Ryul;Yoon, Soon-Gil;Song, Rak-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.485-491
    • /
    • 2009
  • In present work, NiO/YSZ anode functional layer was prepared by nano NiO powder and 8YSZ powder. The nano NiO powders were made by Pulsed wire evaporation (PWE) method. Nano NiO- YSZ functional layer was sintered at the temperature of $900-1400^{\circ}C$. The prepared functional layer was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. The nano NiO- YSZ anode functional layer sintered at $1300^{\circ}C$ shows the lowest polarization resistance. Nano NiO- YSZ anode functional layer shows about two times smaller polarization resistance than the anode functional layer made by commercial NiO-YSZ powders. Based on these experimental results, it is concluded that the nano NiO-YSZ cermet is suitable as a anode functional layer operated at $800^{\circ}C$.

Study of Synthesis and Magnetic Properties of Ni and Ni-Cu Nano Metal Powders Prepared by the Pulsed Wire Evaporation(PWE) Method (전기폭발법에 의한 Ni 및 Ni-Cu 나노 금속 분말의 제조와 자기적 특성연구)

  • 박중학;엄영랑;김경호;김흥희;이창규
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • Nanocrystalline materials of Ni and Ni-Cu alloy have been synthesized by the pulsed wire evaporation (PWE) method and these abnormal magnetic properties in the magnetic ordered state have been characterized using both VSM and SQUID in the range of high and low magnetic fields. Ni and Ni-Cu particles with an average size of 20 to 80 nm were found to influence magnetic hysterisis behavior and the results of powder neutron diffraction patterns and saturation magnetization curves are shown to indicate the absence of the NiO phase. The shifted hysterisis loop and irreversibility of the magnetization curve in the high field region were observed in the magnetic-ordered state of both Ni and Ni-Cu. The virgin magnetization curve for Ni slightly spillover on the limited hysterisis loop ($\pm$20kOe). This irreversibility in the high field of 50 kOe can be explained by non-col-linear behavior and the existence of the metastable states of the magnetization at the surface layer (or core) of the particle in the applied magnetic field. Immiscible alloy of Cu-Ni was also found to show irreversibility having two different magnetic phases.

A Study on the Nano Alloy Powders Synthesized by Simultaneous Pulsed Wire Evaporation (S-PWE) method II - Synthesis of Ee-Al Nano Alloy Powders (동시 전기 폭발법에 의한 나노 합금 분말 제조에 관한 연구 II - Fe-Al alloy 분말 제조)

  • ;;;O. M.;Yu. A. Kotov
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.105-110
    • /
    • 2004
  • In this study the possibility to obtain a homogeneous mixture and to produce solid solutions and intermetallic compounds of Fe and Al nano particles by simultaneous pulsed wire evaporation (S-PWE) have been investigated. The Fe and Al wires with 0.45 mm in diameter and 35 mm in length were continuously co-fed by a special mechanism to the explosion chamber and simultaneously exploded. The characteristics, e.g., phase composition, particle shape, and specific surface area of Fe-Al nano powders have been analyzed. The synthesized powders, beside for Al and $\alpha$-Fe, contain significant amount of a high-temperature phase of $\gamma$-Fe, Fe Al and traces of other intermetallics. The phase composition of powders could be changed over broad limits by varying initial explosion conditions, e.g. wire distance, input energy, for parallel wires of different metals. The yield of the nano powder is as large as 40 wt % and the powder may include up to 46 wt % FeAl as an intermetallic compound.