• Title/Summary/Keyword: PVP nanofiber

Search Result 26, Processing Time 0.031 seconds

Fabrication of Methanol Sensors Using Conductive Polypyrrole Nanofibers with a Core-Shell Structure (코아-셀 구조를 가지는 전도성 폴리피롤 나노섬유를 이용한 메탄올 센서 제작)

  • Jun, Tae-Sun;Lee, Sungho;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.383-387
    • /
    • 2014
  • Electrically conductive polypyrrole-polyvinylpyrrolidone (PPy-PVP) nanofiber mats with a core-shell structure have been successfully fabricated by a two-step process: the formation of FeCl3-containing PVP nanofiber mat by electrospinning, and the vapor-phase polymerization (VPP) of pyrrole monomer on the mat in a sealed chamber at room temperature. Surface morphology and chemical composition of the PPy-PVP mat were characterized by SEM, EDX and FTIR analyses. The as-prepared nonwoven mat was composed of PPy-PVP nanofibers with an average diameter of 300 nm. The sheet conductivity of the nanofiber mat was measured to be approximately 0.01 S/cm by a four-point probe. We have also investigated gas-sensing properties of PPy-PVP nanofiber mat upon exposure to methanol vapor. The PPy-PVP nanofiber sensors were observed to have excellent methanol-sensing performance. The nanofiber-based core-shell nanostructure could give an opportunity to fabricate a highly sensitive and fast response sensor due to its high surfaceto-volume ratio.

The xps study of the Cu-Zn nanofiber

  • Jeong, Eunkang;Kang, Yujin;Park, Juyun;Kang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.236.2-236.2
    • /
    • 2015
  • The copper-zinc(Cu-Zn) nanofiber was prepared by electrospinning method. The Cu/PVP (polyvinylpyrrolidone) and Zn/PVP precursor solutions were prepared by dissolution of copper sulfate and zinc acetate in methanol, respectively. The PVP was used to control the viscosity of the precursor solutions. The optimized ratio for the Cu/PVP and Zn/PVP nanofibers was determined separately. Then the suitable ratio of the precursor solutions was applied for fabrication of Cu/Zn/PVP nanofiber. For the electrospinning method, the precursor solutions were filled in a syringe. The distance between metallic needle on the syringe and collector was fixed at 16 cm and the voltage was applied on the tip was 13.0 kV. And the as-spun nanofiber was heated at 353K for removal of residual solvent. Then the heated nanofibers were calcined at 973K to decompose PVP. The obtained Cu, Zn, and Cu-Zn nanofibers were investigated with X-ray photoelectron spectroscopy (XPS) for the chemical properties, scanning electron microscopy (SEM) for the morphologies, and X-ray diffraction (XRD) to characterize the crystallinity and phase of nanofibers.

  • PDF

Fabrication of Electrospun Titania Nanofiber (전기방사법을 이용한 산화티탄 나노섬유의 제조)

  • Park, Sooil;Lee, Deuk-Yong;Lee, Myung-Hyun;Lee, Se-Jong;Kim, Bae-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.548-553
    • /
    • 2005
  • $TiO_2$ nanofibers were fabricated by annealing electrospun $TiO_2$/PVP nanofibers for 3 h at $500^{\circ}C$ in air. Size and uniformity of electrospun $TiO_2$ nanofiber diameters were evaluated via XRD and SEM by varying electric field, PVP concentration, Ti tetraisopropoxide concentration and precursor flow rate. Experimental results revealed that the effect of PVP concentration on size and uniformity of electrospun $TiO_2$ nanofiber diameters was most profound, however, the other effects were relatively small. Uniform fibers with no beads were observed for the electrospun anatase titania nanofibers with a diameter of 170 nm.

Metallized Electrospun Nanofiber webs with Bulckled Configuration for Highly Transparent and Stretchable Conductors

  • Jin, Yusung;Hwang, Sunju;Jeong, Soo-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.363.1-363.1
    • /
    • 2016
  • Transparent and stretchable conductors are expected to be an essential component in future stretchable optoelectronic devices. Until now, two main methods have been commonly employed to fabricate transparent and stretchable conductors by using metal nanomaterials: creating buckling configurations and creating network configurations. In this report, a novel strategy for obtaining transparent and stretchable conductors is presented, one that employs these two main approaches simultaneously. To the best of our knowledge, this proposed configuration of a buckled long nanofiber network in this study has not yet been reported. In order to provide the transparent conductors with dual mode stretchability originating from simultaneous buckled and network configurations, a buckled Au@polyvinylpyrrolidone (PVP) nanofiber network (hereafter referred to BANN for convenience) was fabricated by transferring Au-metallized electrospun PVP nanofibers onto a prestrained polydimethylsiloxane (PDMS) substrate. Our BANN shows considerably lower strain sensitivity of resistance than that of straight Au@PVP nanofiber network. Durability tests conducted by performing cyclic tensile strain reveal that the relative change in resistance of BANN (prestrain = 20%) is quite small after 1000 cycles. We also demonstrate that this BANN exhibits superior performance over widely used indium tin oxide conductors with regard to high optical transmittance and low sheet resistance.

  • PDF

Fabrication and Characterization of Ag Nanoparticle Dispersed Polymer Nanofiber and Ag Nanofiber Using Electrospinning Method (전기방사법을 이용한 Ag 나노입자 분산 고분자 나노파이버와 Ag 나노파이버 제조 및 특성 평가)

  • Kim, Hee-Taik;Hwang, Chi-Yong;Song, Han-Bok;Lee, Kun-Jae;Joo, Yeon-Jun;Hong, Seong-Jei;Kang, Nam-Kee;Park, Seong-Dae;Kim, Ki-Do;Cho, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.114-118
    • /
    • 2008
  • Functional nanomaterial is expected to have improved capacities on various fields. Especially, metal nanoparticles dispersed in polymer matrix and metal nanofiber, one of the functional nanomaterials, are able to achieve improvement of property in the electric and other related fields. In this study, the fabrication of metal (Ag) nanoparticle dispersed nanofibers were attempted. The Ag nanoparticle dispersed polymer nanofiber and Ag nanofiber were fabricated by electrospinning method using electric force. First, PVP/$AgNO_3$ nanofibers were synthesized by electrospinning in $18{\sim}22kV$ voltage with the starting materials (Ag-nitrate) added polymer (PVP; poly (vinylpyrrolidone)). Then Ag nanoparticle dispersed polymer nanofibers were fabricated to reduce hydrogen reduction at $150^{\circ}C$ for 3hr. And Ag nanofibers were synthesized by the decomposited of PVP at $300{\sim}500^{\circ}C$ for 3hr. The nanofibers were analyzed by XRD, TGA, FE-SEM and TEM. The experimental results showed that the Ag nanofibers could be applied in many fields as an advanced material.

Synthesis characterization of Ni-Cr nanofibers via electrospinning method (전기방사를 통한 Ni-Cr 나노 섬유 합성 및 특성분석)

  • Lee, Jeong-Hun;Won, Mi-So;Lee, Gyu-Hwan;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.168.2-168.2
    • /
    • 2017
  • 발열체는 전기 에너지를 열 에너지로 변환시키는 전기 저항체인데, Ni-Cr계 합금이 발열 가능 온도가 범위가 크고 열 효율 및 내 산화성, 내 부식성이 우수하여 발열체로 많이 사용되고 있다. 그리고 기존의 선형 발열체의 효율성을 개선한 면상 발열체가 개발되었고, 최근 나노 기술의 발달로 나노크기의 ITO(Indium Tin Oxide) 입자나 탄소나노튜브가 코팅된 형태의 투명 면상 발열체가 개발되어 주목을 받고 있다. 투명 면상 발열체는 발열체의 형태를 거시적으로 확인할 수 없기 때문에 자동차의 전면 유리 히터 및 건축용 기능성 창호 등의 심미적 효과를 요구하는 제품에 사용될 수 있다. 본 연구에서는 PVP(Poly vinyl Pirrolidone)을 이용하여 Ni-Cr Nanofiber 제조를 위한 효율적인 전기 방사 조건을 도출한다. PVP 질량에 따라서 Ethanol과 Methanol, 물을 이용하여 viscosity와 ion conduciviy를 조절하였고, 전기방사 조건으로 bead를 최소화 하는 나노섬유를 얻었다. 이어서 Ni-Cr/PVP 용액은 Metal Precursor wt.% 조절 및 방사조건으로 100~300nm의 직경을 가진 나노 섬유를 얻을 수 있었다. 산화/환원 열처리 후 PVP와 Oxide가 제거된 Ni-Cr nanofiber를 합성하였다. Nanofiber 형상은 FE-SEM으로 측정하였으며, XRD, FT-IR 분석을 통해 제작된 나노 섬유의 구조적 특성을 확인하였다.

  • PDF

Evaluation of Electrospun TiO2/PVP/LiCl Nanofiber Array for Humidity Sensing (전기방사를 이용한 TiO2/PVP/LiCl 나노섬유 습도 센서의 제작과 평가)

  • Ryu, Hyobong;Kim, Bumjoo;Kwon, Hyukjin Jean;Heo, Joonseong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.42-45
    • /
    • 2014
  • Recently, tremendous application utilizing electrospun nanofibers have been actively reported due to its several advantages, such as high surface to volume ratio, simple fabrication and high-throughput manufacturing. In this paper, we developed highly sensitive and consistent nanofiber humidity sensor by electrospinning. The humidity sensor was fabricated by rapid electrospinning (~2 sec) $TiO_2$/PVP/LiCl mixed solution on the micro-interdigitated electrode. In order to evaluate the humidity sensing performances, we measured current response using DC bias voltage under various relative humidity levels. The results show fast response / recovery time and marginal hysteresis as well as long-term stability. In addition, with the aid of micro-interdigitated electrode, we can reduce a total resistance of the sensor and increase the total reaction area of nanofibers across the electrodes resulting in high sensitivity and enhanced current level. Therefore, we expect that the electrospun nanofiber array for humidity sensor can be feasible and promising for diverse humidity sensing application.

Electrical Characteristics of Cu2O-PVP Nanofibers Fabricated by Electrospinning (전기방사법으로 제조된 Cu2O-PVP 나노사의 전기적 특성)

  • Kwak, Ki-Yeol;Cho, Kyoung-Ah;Yun, Jungg-Won;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.650-653
    • /
    • 2009
  • Hybrid nanofibers made of $Cu_2O$ and polyvinyl pyrrolidone were fabricated by electrospinning on glass substrates. The current magnitude of the $Cu_2O$-PVP hybrid nanofibers is 10 times larger than that of pure PVP nanofibers. In addition, $Cu_2O$-PVP nanofibers possess high sensitivity to air at room temperature than pure PVP nanifibers.

Electrical characteristics of $Cu_2O$-PVP nanofibers fabricated by electro spinning (전기방사법으로 제조된 $Cu_2O$-PVP 나노사의 전기적 특성)

  • Kwak, Ki-Yeol;Cho, Kyoung-Ah;Yun, Jeong-Gwon;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.33-34
    • /
    • 2009
  • Hybrid nanofibers made of $Cu_2O$ and polyvinyl pyrrolidone were fabricated by electrospinning. The current magnitude of the $Cu_2O$-PVP hybrid nanofibers is 10 times larger than that of pure PVP nanofibers. In addition, $Cu_2O$-PVP nanofibers possess high sensitivity to air at room temperature.

  • PDF

Fabrication of axially aligned $TiO_2/PVP$ nanofibers ($TiO_2/PVP$ 나노섬유의 제조)

  • Lee, Se-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.30-34
    • /
    • 2007
  • [ $TiO_2/PVP$ ] nanofibers were electrospun by varying the collector grounding design to improve the axial alignment of fibers. The collectors are composed of two pieces of conductive substrates separated by a gap f3r the uniaxial alignment of fibers (X design). The collectors consisting of two sets of substrates placed by $90^{\circ}$ (XY design) equipped with a timer are also prepared for biaxial alignment of fibers. Both collectors show that the charged nanofibers are stretched to span across the gap between the electrodes. Experimental results reveal that the latter collector is more effective on the directionality of electrospun $TiO_2/PVP$ nanofibers due to the dissipation of accumulated electric charge between the collectors.