• Title/Summary/Keyword: PVDF polymers

Search Result 26, Processing Time 0.022 seconds

Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance (리튬 금속 전극상 고분자/무기물 나노복합막 형성: 리튬층의 효과적 표면성장 제어 및 전기화학적 특성 향상)

  • Jeong, Yohan;Seok, Dohyeong;Lee, Sanghyun;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Polymer/inorganic composites were used as a protective layer of lihitum metal electrode for effective suppression of lithium dendrite. PVDF-HFP was used as an polymer material and TiO2 nanoparticle was used as an inorganic material. PVDF-HFP is a highly flexible polymer that acts as a matrix of inorganic materials while TiO2 nanoparticle improves the mechanical strength and ion conductivity of the protective layer. The as-synthesized protective hybrid membrane exhibited good dispersion of TiO2 in the PVDF-HFP matrix by SEM, AFM and XRD analyses. Furthermore, the electrochemical analysis showed that the polymer-inorganic composite retained high coulombic efficiency of 80% and low overpotential, less than 20 mV until the 100th cycles due to the improved mechanical properties and ion conductivity in comparison to the control sample (untreated and PVDF-HFP polymers/Cu).

The manufacture of poly(vinylidene fluoride) thin film through vapor deposition method (진공증착법을 이용한 PVDF 박막의 제작)

  • Park, S.H.;Im, U.C.;Han, S.O.;Jin, G.S.;Chung, H.D.;Park, K.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1190-1192
    • /
    • 1995
  • Poly(vinylidene fluoride)(PVDF) is one of the most studied polymers in the latest date. The interest in PVDF lies in its remarkable piezoelectric and pyroelectric properties. Also, PVDF has at least four known crystalline structures(; they are referred to as the ${\alpha},\;{\beta},\;{\gamma}\;and\;{\alpha}_p$ phase or forms II, I, III and $IV_p$). In this study, the manufactured PVDF thin film through vapor deposition method had form II(; the glass at $70^{\circ}C$). This thin film was investigated by x-ray diffraction(XRD), Fourier Transform Infrared(FT-IR) spectroscopy and Differential Thermal Analysis(DTA). XRD and FT-IR indicate crystallization forms from the glass at $70^{\circ}C$ into form II.

  • PDF

PVDF/h-BN hybrid membranes and their application in desalination through AGMD

  • Moradi, Rasoul;Shariaty-Niassar, Mojtaba;Pourkhalili, Nazila;Mehrizadeh, Masoud;Niknafs, Hassan
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.221-231
    • /
    • 2018
  • A new procedure to produce poly(vinylidene fluoride)/boron nitride hybrid membrane is presented for application in membrane distillation (MD) process. The influence of hexagonal boron nitride (h-BN) incorporation on the performance of the polymeric membranes is studied through the present investigation. For this aim, h-BN nanopowders were successfully synthesized using the simple chemical vapor deposition (CVD) route and subsequent solvent treatments. The resulting h-BN nanosheets were blended with poly(vinylidene fluoride) (PVDF) solution. Then, the prepared composite solution was subjected to phase inversion process to obtain PVDF/h-BN hybrid membranes. Various examinations such as scanning electron microscopy (SEM), wettability, permeation flux, mechanical strength and liquid entry pressure (LEP) measurements are performed to evaluate the prepared membrane. Moreover, Air gap membrane distillation (AGMD) experiments were carried out to investigate the salt rejection performance and the durability of membranes. The results show that our hybrid PVDF/h-BN membrane presents higher water permeation flux (${\sim}18kg/m^2h$) compared to pristine PVDF membrane. In addition, the experimental data confirms that the prepared nanocomposite membrane is hydrophobic (water contact angle: ${\sim}103^{\circ}$), has a porous skin layer (>85%), as well competitive fouling resistance and operational durability. Furthermore, the total salt rejection efficiency was obtained for PVDF/h-BN membrane. The results prove that the novel PVDF/h-BN membrane can be easily synthesized and applied in MD process for salt rejection purposes.

A study on the piezoelectric properties with PZT/PVDF composites of O-3 connectivity (O-3형 PZT/PVDF 복합재료의 압전특성에 관한 연구)

  • Choi, Yong;Kim, Yong-Huck;Kim, Ho-Gi;Lee, Deok-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.254-256
    • /
    • 1987
  • In this study, piezoelectric composite materials of O-3 connectivity were made by, mixing FZT ceramics with polymers, the dependence of volume % PZT and poling condition for dielectric and piezoelectric properties were investigated. The measured value of dielectric constant was dependent on the volume % PZT, which was exponentially increased with volume %PZT. Piezoelectric coefficient ($\bar{d}_{33}$) was exponentially increased with volume % PZT. Voltage coefficient ($\bar{g}_{33}$) was decreased with volume % PZT, but it was larger than that of single phase PZT ($\bar{g}_{33}$) because the dielectric constant ($\bar{\varepsilon}_{33}$) of composite materials was decreased.

  • PDF

The Charge decay characteristics of Polymer surface by Corona discharge (코로나 하전한 고분자의 표면전하감쇄)

  • Lee, B.S.;Kim, Y.B.;Park, J.K.;Kim, J.S.;Lee, J.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1156-1158
    • /
    • 1995
  • Charge decay, thermally stimulated current(TSC), charging and discharging currents(I) are measured for negatively corona-charged polymers. In this study, we will make an experiment in charge decay on polymer surface, TSC, polarity effect and the others in order to analysis it's mechanism. Especially polyvinylidene fluoride(PVDF) film is the best functional material which has been so far. Therefore, It's worthy of notice to investigate it's characteristic. And then some other functional polymers will be focused on. An experimental result was missed out for the shortage of setting. So, this thesis will be explained on the theory and direction of reseach hereafter.

  • PDF

The application of model equations to Non-Fickian diffusion observed in Fluoropolymers

  • Lee, Sangwha
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.34-35
    • /
    • 1996
  • The diffusional behavior of many non-solvents in glassy or semicrystalline polymers cannot be adequately described by a concentration-dependent form of Fick's law, especially when mass transfer is coupled with structural changes. Many mathematical models have been devised to interprete non-Fickian diffusion dominated by relaxation kinetics. In formulation of non-Fickian diffusion mathematics, therefore, the most important factor to consider is how relaxation effects can influence the governing constitutive equation and boundary conditions. That is, relaxation parameters can be accommodated by variable boundary conditions or a modified continuity equation, or both, depending on specific systems and conditions (Frish, 1980). Accoring to Astarita and Nicolais (1983), the model equations can be broadly categorized as continuous or discontinuous. Continuous model equations encompass phenomena where the structural change takes place gradually over the whole volume of the polymer sample (Crank, 1953; Long and Richman, 1961; Berens and Hopfenberg, 1978). On the other hand, discontinuous model equations deal with the phenomena where the morphological change appears to be abrupt (Li, 1984). Four mathematical models with different relaxation parameters were applied to fit the anomalous sorption data observed in fluoropolymers (PVDF, ECTFE). The fitted result for PVDF-benzene sorption data is shown in Fig. 1.

  • PDF

A Comparison Study of Output Performance of Organic-Inorganic Piezoelectric Nanocomposite Made of Piezoelectric/Non-piezoelectric Polymers and BaTiO3 Nanoparticles (압전 및 비압전 폴리머와 BaTiO3 나노입자로 제조된 유-무기 압전 나노복합체의 발전성능 비교연구)

  • Hyeon, Dong Yeol;Park, Kwi-Il
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.119-125
    • /
    • 2019
  • Piezoelectric energy harvesting technology is attracting attention, as it can be used to convert more accessible mechanical energy resources to periodic electricity. Recent developments in the field of piezoelectric energy harvesters (PEHs) are associated with nanocomposites made from inorganic piezoelectric nanomaterials and organic elastomers. Here, we used the $BaTiO_3$ nanoparticles and piezoelectric poly(vinylidene fluoride) (PVDF) polymeric matrix to fabricate the nanocomposites-based PEH to improve the output performance of PEHs. The piezoelectric nanocomposite is produced by dispersing the inorganic piezo-ceramic nanoparticles inside an organic piezo-polymer and subsequently spin-coat it onto a metal plate. The fabricated organic-inorganic piezoelectric nanocomposite-based PEH harvested the output voltage of ~1.5 V and current signals of ~90 nA under repeated mechanical pushings: these values are compared to those of energy devices made from non-piezoelectric polydimethylsiloxane (PDMS) elastomers and supported by a multiphysics simulation software.

Piezoelectric Polymer Ultrasound Transducers and Its Biomedical Applications (압전고분자 초음파 트랜스듀서와 생의학적 응용)

  • Ha, Kang-Lyeol;Cao, Yonggang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • PVDF(poly vinylidene fluoride) and P(VDF-TrFE)(poly vinylidene fluoride-tetrafluoroethylene) are the typical piezoelectric polymers with unique properties. Even they are inferior to conventional piezoelectric ceramics PZT in electromechanical conversion efficiency and interior loss, though they are superior in receiving sensitivity and frequency bandwidth. Their acoustic impedances are relatively close to water or biological tissue and it is easier to make thin film than other piezoelectric materials. Futhermore, the film is so flexible that it is easy to attach on a complex surface. Those properties are suitable for the ultrasound transducers which are useful for medical and biological application, so that various types of polymer transducers have been developed. In this paper, several important considerations for design and fabrication of piezoelectric polymer transducers were described and their effect on the transducer performance were demonstrated through the KLM model analysis. Then, it was briefly reviewed about the structures of the polymer transducers developed for obtaining images as well as the characteristics of the images in several important medical and biological application fields.

Electrical Properties of 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE Composites (스마트 페인트 센서용 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE 복합소재 제조 및 전기적 특성에 관한 연구)

  • Sung Jae Hyoung;Eun Seo Kang;Yubin Kang;Chae Ryeong Kim;Chang Won Ahn;Byeong Woo Kim;Jae-Shin Lee;Hyoung-Su Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.433-438
    • /
    • 2024
  • Piezoelectric ceramics play an important role in various electronic applications. However, traditional ceramics are difficult to be used in some complicated structures, due to their low flexibility and high brittleness. To solve this problem, this study prepared and investigated ceramic/polymer composites that can utilize a good flexibility of polymers. Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) and 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23) ceramics were selected to fabricate the composites. Ceramic/polymer composites were prepared using various volume fractions of BNST23 ceramics. The distribution of piezoceramic particles in BNST23/PVDF-TrFE composites was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The dielectric and piezoelectric properties of the composites were significantly influenced by the volume fraction of the piezoelectric ceramics. As a result, the highest piezoelectric constant (d33) of 56 pC/N was obtained in a composites with 70% volume fraction of BNST23 ceramics. Accordingly, it is expected that BNST23/PVDF-TrFE composites can be applied to various sensor applications.

Polymer Films with Electrospray Deposition, model and experiment

  • Rietveld Ivo B.;Kobayashi Kei;Yamada Hirofumi;Matsushige Kazumi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.284-284
    • /
    • 2006
  • Electrospray deposited films of poly(vinylidene fluoride) were prepared with various conditions. A model has been developed, which provides the state of the electrosprayed droplet at impact. With a combination of the experimental films and the model calculations, it can be shown that growth rate, the increase of the sprayed solution on the substrate per second, defines the film morphology in electrospray deposition. Growth rate indicates which factors play the main role in the film formation process. The most important factors are liquid flow, surface tension and shear rate. The model can calculate the shear rate and it is shown that PVDF, and most likely polymers in general, has a large range of growth rates, where the morphology only depends on the shear rate of the depositing droplet. This method can also be used to describe electrospray deposition of other compounds.

  • PDF