DOI QR코드

DOI QR Code

Piezoelectric Polymer Ultrasound Transducers and Its Biomedical Applications

압전고분자 초음파 트랜스듀서와 생의학적 응용

  • Ha, Kang-Lyeol (Department of Physics, Pukyong National University) ;
  • Cao, Yonggang (Department of Physics, Pukyong National University)
  • Received : 2012.09.05
  • Accepted : 2012.10.12
  • Published : 2012.10.30

Abstract

PVDF(poly vinylidene fluoride) and P(VDF-TrFE)(poly vinylidene fluoride-tetrafluoroethylene) are the typical piezoelectric polymers with unique properties. Even they are inferior to conventional piezoelectric ceramics PZT in electromechanical conversion efficiency and interior loss, though they are superior in receiving sensitivity and frequency bandwidth. Their acoustic impedances are relatively close to water or biological tissue and it is easier to make thin film than other piezoelectric materials. Futhermore, the film is so flexible that it is easy to attach on a complex surface. Those properties are suitable for the ultrasound transducers which are useful for medical and biological application, so that various types of polymer transducers have been developed. In this paper, several important considerations for design and fabrication of piezoelectric polymer transducers were described and their effect on the transducer performance were demonstrated through the KLM model analysis. Then, it was briefly reviewed about the structures of the polymer transducers developed for obtaining images as well as the characteristics of the images in several important medical and biological application fields.

PVDF와 P(VDF-TrFE)로 대별되는 압전고분자는 종래의 대표적인 압전재료인 PZT에 비해 전기음향변환효율이 떨어지며 내부손실이 큰 단점은 있으나, 음향임피던스가 물 또는 생체와 비슷하고 수신효율이 우수하며 광대역 특성을 나타내는 등의 장점을 가진 재료이다. 또한 다른 압전재료에 비해 얇은 막으로의 제작이 쉽고, 그 막은 유연하므로 복잡한 곡면을 갖는 고주파 초음파 트랜스듀서 재료로 유용하다. 그러한 특성은 생의학적 응용에 적합한바, 다양한 형태의 초음파 트랜스듀서가 연구 개발되어져 왔다. 본 논문에서는 먼저, 압전고분자막을 이용하여 초음파 트랜스듀서를 설계 제작하는데 있어서 고려해야할 몇 가지 주요사항을 기술하고, KLM 모델을 사용한 해석을 통하여 그 고려사항들이 트랜스듀서의 동작에 미치는 영향을 파악하였다. 다음으로, 의학적 또는 생물학적 응용을 목적으로 초음파 영상을 얻고 있는 몇몇 주요 응용분야에서 사용되는 압전고분자 트랜스듀서의 구조와 그것을 이용하여 얻은 영상의 특징에 대하여 간략히 해설하였다.

Keywords

References

  1. H. Kawai, "The piezoelectricity of Poly (Vinylidene fluoride)," Jpn. J. Appl. Phys., Vol. 8. pp. 975-976 (1969) https://doi.org/10.1143/JJAP.8.975
  2. D. G. Shombert, S. W. Smith and G. R. Harris, "Angular response of miniature ultrasonic hydrophone," Med. Phys., Vol. 9, pp. 484-492 (1982) https://doi.org/10.1118/1.595114
  3. P. Lum, M. Greenstein and C. Grossman et al., "High-frequency membrane hydrophone," IEEE Transactions on UFFC, Vol. 43, No. 4, pp. 536-544 (1996) https://doi.org/10.1109/58.503713
  4. P. L. Carson, P. R. Fischella and T. V. Oughton, "Ultrasonic power and intensities produced by diagonostic ultrasound equipment," Ultrasound Med. Biol., Vol. 3, pp. 341-350 (1978) https://doi.org/10.1016/0301-5629(78)90076-5
  5. F. S. Foster, C. J. Pavlin, G. R. Lockwood, L. K. Ryan, K. A. Harasiewicz, L. R. Berube and A. M. Rauth, "Principles and applications of ultrasound backscatter microscopy," IEEE Trans. on UFFC, Vol. 40, No 5, pp. 608-617 (1993) https://doi.org/10.1109/58.238115
  6. F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher and D. H. Turnbull, "Advances in ultrasound biomicroscopy," Ultrasound in Med. & Biol., Vol. 26, pp. 1-27 (2000) https://doi.org/10.1016/S0301-5629(99)00096-4
  7. T. Dada, R. Gadia, A. Sharma, P. Ichhpujani, S. J., S. Bhartiya and A. Panda, "Ultrasound biomicroscopy in glaucoma," Surv. Ophthalmol., Vol. 56, No. 5, pp. 433-450 (2011) https://doi.org/10.1016/j.survophthal.2011.04.004
  8. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Review of Scientific Instrument, Vvol. 77, pp. 041101-1-22 (2006) https://doi.org/10.1063/1.2195024
  9. F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata and K. K. Shung, "High-resolution photoacoustic imaging with focused laser and ultrasonic beams," Appl. Phys. Lett., Vol. 94, pp. 033902-1-3 (2009) https://doi.org/10.1063/1.3073749
  10. S. Hu and L. V. Wang, "Photoacoustic imaging and characterization of the microvasculature," Journal of Biomedical Optics, Vol. 15, No. 1, pp. 011101-1-15 (2010) https://doi.org/10.1117/1.3281673
  11. R. Krimholtz, D.A. Leedom and G.L. Matthaei, "New equivalent circuit for elementary piezoelectric transducers," Electron. Lett., Vol. 6, pp. 398-399 (1970) https://doi.org/10.1049/el:19700280
  12. T. Yagi, M. Tatemoto and J. Sako, "Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers," Polymer Journal, Vol. 12, No. 4, pp. 209-223 (1980) https://doi.org/10.1295/polymj.12.209
  13. H. Ohigashi and K. Koga, "Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor," Jpn. J. Appl. Phys., Vol. 21, pp. L455-L457 (1982) https://doi.org/10.1143/JJAP.21.L455
  14. Q. X. Chen and P. A. Payne, "Industrial applications of piezoelectric polymer transducers," Meas. Sci. Technol., Vol. 6, No. 3, pp. 249-267 (1995) https://doi.org/10.1088/0957-0233/6/3/001
  15. L. F. Brown, "Design considerations for piezoelectric polymer ultrasound transducers," IEEE Trans. on UFFC, Vol. 47, No. 6, pp. 1377-1396 (2000) https://doi.org/10.1109/58.883527
  16. Yanggang Cao, Kang-Lyeol Ha, Moojoon Kim and Jungsoon Kim, "The influence of bonding layer on the characteristic of piezoelectric polymer transducer," IEICE Technical Report, Vol. 112, No. 186, pp. 33-36 (2012)
  17. H. Ohigashi, T. Nakanishi, T. Itoh, M. Suzuki and R. Omoto, "Study on piezoelectric polymer transducers for high resolution ultrasound imaging," Proc. World Fed. Ultrasound Med. Biol., p. 376 (1979)
  18. N. Hashimoto, T. Miya, K. Yoneya, A. Ando and H. Ohigashi, "High resolution ultrasound imaging using a large aperture annular array transducer of P(VDF-TrFE) copolymer," Acoustical Imaging, Vol. 17, pp. 561-570 (1988)
  19. F. S. Foster and J. W. Hunt, "Improved ultrasonography by means of cylindrical transducers," Proc. World Fed. Ultrasound Med. Biol., p. 402 (1979)
  20. E. K. Fishell, F. S. Foster, T. Connors, M. Khodai, K. Harasiewicz and J. W. Hunt, "Clinical performance of a cone/annular array hybrid ultrasound breast scanner," J. Ultrasound Med. Biol., Vol. 16, pp. 361-374 (1990) https://doi.org/10.1016/0301-5629(90)90066-L
  21. F. S. Foster, M. Strban and G. Austin, "The ultrasound macroscope: Initial studies of breast tissue," Acoustical Imaging, Vol. 6, pp. 243-261 (1984)
  22. K. Kimura, N. Hashimoto and H. Ohigashi, "Performance of a linear array transducer of vinylidene fluoride trifluoroethylene copolymer," IEEE Trans. on Sonics and Ultrason., Vol. SU-32(4), pp. 566-573 (1985)
  23. M. D. Sherar, M. B. Noss and F. S. Foster, "Ultrasound backscatter microscopy images the internal structure of living tumour spheroids," Nature, Vol. 330, pp. 493-495 (1987) https://doi.org/10.1038/330493a0
  24. M. Sherar and F. S. Foster, "The design and fabrication of high frequency poly(vinylidene fluoride) transducers," Ultrason. Imag., Vol. 11, pp. 75-94 (1989) https://doi.org/10.1016/0161-7346(89)90001-1
  25. http://www.capolabs.com.
  26. J. A. Ketterling, O. Aristizabal, D. H. Turnbull and F. L. Lizzi, "Design and fabrication of a 40-MHz annular array transducer," IEEE Transactions on UFFC, Vol. 52, No. 4, pp. 672-681 (2005) https://doi.org/10.1109/TUFFC.2005.1428050
  27. E. J. Gottlieb, J. M. Cannata, C. H. Hu and K. Kirk Shung, "Development of a high-frequency (>50 MHz) copolymer annulararray ultrasound transducer," IEEE Transactions on UFFC, Vol. 53, No. 5, pp. 1037-1045 (2006) https://doi.org/10.1109/TUFFC.2006.1632693
  28. K. Snook, J. Z. Zhao, H. F. C. Alves, J. Cannata, W. H. Chen, R. J. Meyer, Jr., T. A. Ritter and K. K. Shung, "Design, fabrication, and evaluation of high frequency, singleelement transducers incorporating different materials," IEEE Transactions on UFFC, Vol. 49, No. 2, pp. 169-176 (2002) https://doi.org/10.1109/58.985701
  29. http://www.paradigm-medical.com/ubms.html.
  30. http://www.optos.com/en-us.
  31. R. H. Silverman, "High-resolution ultrasound imaging of the eye-review," Clin Experiment Ophthalmol., Vol. 37, No. 1, pp. 54-67 (2009) https://doi.org/10.1111/j.1442-9071.2008.01892.x
  32. T. Dada, R. Gadia, A. Sharma, P. Ichhpujani, S. J., S. Bhartiya and A. Panda, "Ultrasound biomicroscopy in glaucoma," Surv Ophthalmol., Vol. 56, No. 5, pp. 433-50 (2011) https://doi.org/10.1016/j.survophthal.2011.04.004
  33. L. V. Wang, "Tutorial on photoacoustic microscopy and computed tomography," IEEE Jour. of selected topics in quantum electronics, Vol. 14, No. 1, pp. 171-179 (2008) https://doi.org/10.1109/JSTQE.2007.913398
  34. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum., Vol. 77, pp. 041101-1-22 (2006) https://doi.org/10.1063/1.2195024
  35. H. F Zhang, K. Maslov, G. Stoica and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol., Vol. 24, pp. 848-851 (2006) https://doi.org/10.1038/nbt1220
  36. S. Hu and L. V. Wang, "Photoacoustic imaging and characterization of the microvasculature," Journal of Biomedical Optics, Vol. 151, pp. 011101-15 (2010)
  37. S. Hu, K. Maslov and L. V. Wang, "Secondgeneration optical-resolution photoacoustic microscopy with improved sensitivity and speed," Optics Letters, Vol. 36, No. 7, pp. 1134-1136 (2011) https://doi.org/10.1364/OL.36.001134
  38. C. Chandrana, "Development of a focused broadband ultrasonic transducer for high resolution fundamental and harmonic intravascular imaging," Thesis for doctor of engineering, Cleveland State Univ, USA, (2008)