• Title/Summary/Keyword: PVC-membranes

Search Result 52, Processing Time 0.026 seconds

Silicone Rubber Blended with Polyurethane as the Matrix for Ion-Selective Membrane Electrodes

  • Lee, Hyun Jung;Rho, Kyung Lae;Kim, Chang Yong;Oh, Bong Kyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.623-630
    • /
    • 1995
  • Silicone rubber-based sodium-selective membranes are developed for solid-state ion sensors. It was shown that the potetiometric performance of SR-based membranes are greatly dependent on the type of neutral carriers employed; among the three ionophores, N,N,N',N'-tetracyclohexyl-1,2-phenylenedioxydiacetamide (ETH 2120), bis[(12-crown-4)methyl]dodecylmethylmalonate (D12C4DMM) and monensin methyl ester (MME), examined, only ETH 2120 was compatible with the SR-based matrix. Addition of about 20 wt% plasticizer to the SR-based matrix provided the resulting membranes with potentiometric properties essentially equivalent to those of the corresponding PVC-based membranes. Owing to the strong adhesive strength of SR-based membranes, the CWEs coated \vith those membranes exhibited long lifetime with conventional electrode-like performance. Blending of PU into the SR matrix increased the lifetime of CWEs from two weeks to one month.

  • PDF

Effect of Physical Properties of Polymer Solution on the Thickness of Ultrathin Membrane Prepared by Water Casting Method (고분자용액의 물성이 수면전개 박막의 두께에 미치는 영향)

  • Nam, Suk-Tae;Han, Myeong-Jin;Choi, Ho-Sang;Park, Young Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.200-206
    • /
    • 1998
  • The effect of surface tension and viscosity of polymer solution on the thickness of water casting membranes was studied. Spreading of polymer solutions on water surface was governed by the surface tension and viscosity of the polymer solution. The thickness of water casting membrane was affected by these two factors. The properties, mentioned above, were proportional to the polymer concentration. The order of magnitude in surface tension was PVC>PS>CA and that of viscosity was CA>PS>PVC. The difference of surface tension between water and polymer solution acts as driving force for spreading of polymer solution, but the viscosity as resistance. The thickness of polymeric membrane prepared by water casting was PS>CA>PVC. The order of membrane thickness was not as same as that of surface tension. This phenomena were due to the viscosity which acts as more effective spreading resistance than the surface tension.

  • PDF

Preparation and Characterization of a Cross-Linked Anion-Exchange Membrane Based on PVC for Electrochemical Capacitor (전기화학 캐퍼시터용 PVC기반 가교 음이온교환 멤브레인의 제조 및 특성)

  • Kim, Young-Ji;Kim, Soo-Yeoun;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.903-913
    • /
    • 2021
  • Three-type PVC membranes denoted by AEM-1, AEM-2, and AEM-3 with a cross-linked anion-exchange group were prepared by substitution reaction of PVC with triethyldiamine (TEDA), 1,4-dimethylpiperazine (DMP), and 1,4-bis(imidazol-1-ylmethyl)benzene (BIB) in cyclohexanone, respectively. We confirmed the successful preparation of the AEM-1, AEM-2, and AEM-3 via ionic conductivity (S/cm), water uptake (%), contact angle, ion-exchange capacity (meq/g), thermal properties, SEM and XPS analysis, respectively. The electrochemical capacitor experiments using PVC membrane with cross-linked anion-exchange group in organic electrolytes were performed. The prepared AEM-1, AEM-2 AEM-3 have a good stability by charge and discharge performance in organic electrolyte. As a result, the AEM-2 and AEM-3 membrane based on PVC prepared by the solvent casting method after substituent reaction is suitable for the use as a separator in organic electrochemical capacitor (supercapacitor).

Gas Permeation Properties of Polymeric Membranes for Biosensor Prepared from Poly(vinyl chloride) Derivatives (Poly(vinyl chloride) 유도체로부터 제조된 바이오센서용 고분자막의 기체 투과특성)

  • Lim, Chun-Won;Kim, Wan-Young;Lee, Youn-Sik;Yoon, Jeong-Won;Jeong, Yong-Seob
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.362-366
    • /
    • 1999
  • Membranes for biosensor were prepared from poly(vinyl chloride) (PVC)l derivatives using the solution casting method, and their gas permeabilities were studied. The polymer membranes dried slowly in air showed higher permeability coefficients than those dried in vacuum. The permeabilily coefficients of carboxylated poly(vinyl chloride) (CPVC) membranes for $O_2$ and $CO_2$ decreased as the pressure of the feed gas increased. The addition of dioctylphthalate (DOP) enhanced the permeation rates for $O_2$ and $CO_2$. For example, the permeability coefficients of CPVC membranes containing 30 wt. % DOP for $O_2$ and $CO_2$ at 100 psig were 2.03 and 0.96 Barrer, respectively, which were about 4~5 times higher than those of the membranes without DOP. Poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) (Syn-PVCAcAl) obtained by hydrolysis of poly(vinyl chloride-co-vinyl acetate (PVCA) showed a higher permeability coefficient for $CO_2$ in the presence of DOP than that for commercial PVCAcAl, but did not show any significant difference in permeability for $O_2$.

  • PDF

Hg(II) ion- Selective Electrodes with Neutral Carriers of Macrocycles (거대고리 중성 운반체를 갖는 Hg(II)이온 선택성 전극)

  • 정오진
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.211-220
    • /
    • 1996
  • New thin-and diselena-crown ethers containing two suffer and selenium donor atoms have been prepared. And then, mercury ($Hg^{2+}$) ion-selective electrodes with PVC-plasticizer (STPB) based on some macrocycles as neutral carriers were also made. The electrochemical selectivities for various ions, and the effects for macrocycles, matrix of membranes, ratio of plasticizer to macrowcles, concentration and pH of test solution were investigated on the $Hg^{2+}$ ion-selective electrodes. The 1, 10-diselena-18-crown-6-PVC-STPB (sodium tetraphenylborate) exhibited good linear responses of ${28.2}\pm{0.6}$ decade-1 for $Hg^{2+}$ ion in the conientration ranges of $10^{-2}~10^{-6}$ M $Hg^{2+}$ ion. This electrode exhibited comparatively good selectivities for $Hg^{2+}$ ion in comparison with alkali and alkaline earth metal ions, some heavy metal ions and rare earth metal ion in the range of pH 2.5~6.0. In addition, this electrode was applied as a sensor in the titration of $Hg^{2+}$ ion with $1^-$ ion in water.

  • PDF

Electrochemical Sensor for the Selective Determination of Prindopril Based on Phosphotungestic Acid Plastic Membrane

  • Zareh, Mohsen M.;Wasel, Anower M.;Alkreem, Yasser M. Abd
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3088-3092
    • /
    • 2013
  • A novel PVC membrane sensor for perindopril based on perindopril-phosphotungstate ion pair complex was prepared. The influence of membrane composition (i.e. percent of PVC, plasticizer, ion-pair complex, and kind of plasticizer), inner solution, pH of test solution and foreign cations on the electrode performance was investigated. The optimized membrane demonstrates Nernstian response ($30.9{\pm}1.0$ mV per decade) for perindopril cations over a wide linear range from $9.0{\times}10^{-7}$ to $1{\times}10^{-2}$ M at $25^{\circ}C$. The potentiometric response is independent of the pH in the range of 4.0-9.5. The proposed sensor has the advantages of easy preparation, fast response time. The selectivity coefficients indicate excellent selectivity for perindopril over many common cations (e.g., $Na^+$, $K^+$, $Mg^{2+}$, $Cu^{2+}$, $Ni^{2+}$, rhamnose, maltose, glycine and benzamide. The practical applications of this electrode was demonstrated by measuring the concentrations of perindopril in pure solutions and pharmaceutical preparations with satisfactory results.

Application of Ion-Selective Electrodes to Measure Ionic Concentrations of Macronutrients in Hydroponics (수경재배 시 다량 이온 농도 측정을 위한 이온 선택성 전극의 응용)

  • Kim, Min-Su;Park, Tu-San;Cho, Seong-In
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.37-43
    • /
    • 2007
  • This study was carried out to investigate the applicability of PVC membrane-based ion-selective electrodes for macronutrients (K, Ca, and N) by measuring of potassium, calcium, nitrate ions in hydroponic nutrient solution. The capabilities of two ion-selective membranes with varying chemical compositions for each ion were evaluated in terms of sensitivity, selectivity, and lifetime to choose sensing elements suitable for measuring typical ranges of nutrient concentrations in hydroponic solutions. The selected calcium and nitrate ion-selective membranes showed effectively sensitive responses to calcium and nitrate ions with lifetimes of 25 and 15 days, respectively. The addition of a cation additive to the potassium membrane cocktail allowed its sensitivity to be increased whereas its lifetime was reduced from 30 days to 10 days.

Synthesis and Characterization of Proton Conducting Graft Copolymer Membranes (수소이온 전도성 가지형 공중합체 전해질막 제조 및 분석)

  • Roh, Dong Kyu;Koh, Jong Kwan;Seo, Jin Ah;Kim, Jong Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.126.2-126.2
    • /
    • 2010
  • The "grafting from" technology to prepare the well-defined microphase-separated structure of polymer using atom transfer radical polymerization (ATRP) will be introduced in this presentation. Various amphiphilic comb copolymers were synthesized through this approach using poly (vinylidene fluoride) (PVDF), poly (vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-co-CTFE) and poly(vinyl chloride) (PVC) as a macroinitiator. Hydrophilic side chains such as poly (styrene sulfonic acid) (PSSA) or poly (sulfopropyl methacrylate) (PSPMA) were grafted from the mains chains using direct initiation of the chlorine atoms. The structure of mass transport channels has been controlled and fixed by crosslinking the hydrophobic domains, which also provides the greater mechanical properties of membranes. Successful synthesis and microphase-separated structure of the polymer were confirmed by $^1H$ NMR, FT-IR spectroscopy and TEM. The grafted/crosslinked membranes exhibited good mechanical properties (400 MPa of Young's modulus) and high thermal stability (up to $300^{\circ}C$), as determined by a universal testing machine (UTM) and TGA, respectively.

  • PDF

Novel Silver(I) Ion Selective PVC Membrane Electrode Based on the Schiff Base (N2E,N2'E)-N2,N2'-Bis(Thiophen-2-ylmethylene)-1,1'-Binaphthyl-2,2'-Diamine

  • Jeong, Eunseon;Ahmed, Mohammad Shamsuddin;Jeong, Hae-Sang;Lee, Eun-Hee;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.800-804
    • /
    • 2011
  • A potentiometric sensor based on the Schiff base $(N^2E,N^{2'}E)-N^2,N^{2'}$-bis(thiophen-2-ylmethylene)-1,1'-binaphthl-2,2'-diamine has been synthesized and explored as an ionophore PVC-based membrane sensor selective for the silver ($Ag^+$) ion. Potentiometric investigations indicate a high affinity of this receptor for the silver ion. Seven membranes have been fabricated with different compositions, with the best performance shown by the membrane with an ionophore composition (w/w) of: 1.0 mg, PVC: 33.0 mg, DOA: 66.0 mg in 1.0 mL THF. The sensor worked well within a wide concentration range of $1.0{\times}10^{-2}$ to $1.0{\times}10^{-7}$ M, at pH 5, at room temperature (slope 57.4 mV/dec.), and with a rapid response time of 9 s; the sensor also showed good selectivity towards the silver ion over a huge number of interfering cations, with the highest selectivity coefficient for $Hg^{2+}$ at -3.7. Thus far, the best lower detection limit was $4.0{\times}10^{-8}$ M.

Determination of Complex Formation Constant of Sodium-Selective Ionophores in Solvent Polymeric Membranes (용매 고분자막 상에 고정된 나트륨 이온선택성 물질의 착물형성상수 결정)

  • Kang, Tae Young;Kim, Sung Bae;Oh, Hyon Joon;Han, Sang Hyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.466-473
    • /
    • 2000
  • The complex formation constants (${\beta}_{MLn}$) of potassium and various sodium-selective neutral carriers in solvent polymeric membranes have been determined using solvent polymeric membrane-based optodes and ion-selective electrodes (ISEs). Two different types of PVC-based membranes containing the H^+selective chromoionophore (ETH 5294) with and without a sodium ionophore (4-tert-bntylcalix[4]arenetetraacetic acid tetraethyl ester, ETH 2120, bis[(12-crown-4)methyl] dodecylmethylmalonate or monensin methyl ester) were prepared and their optical responses to either the changes in alkali metal cation (e.g., sodium and potassium) concentrations at a fixed pH (0.05 M Tris-HCl, pH 7.2) or varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The same type of membranes were also mounted in conventional electrode body and their potentiometric responses to varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The complex formation constants of the ligand could be calculated from the calibration plots of the relative absorbance vs. the activity ratios of cation and proton ($a_{M^+}/a_{H^+}$) and of the emf vs. pH. It was confirmed that the ratio values of the complex formation constants for the primary and interfering ions are closely related to the experimental selectivity coefficients of ISEs.

  • PDF