• Title/Summary/Keyword: PVC flooring

Search Result 19, Processing Time 0.028 seconds

The Analysis of Thermal Conductivity and Basic Quality Performances of Decoration Wood-based Flooring Board Laminated with PVC Surface Decoration Materials (PVC 표면치장재를 적층한 치장목질마루판의 열특성 및 기초 품질성능 분석)

  • Park, Cheul-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • For test on flooring board laminated with PVC decoration materials in order to replace the current surface materials such as HPL in decoration wood-based flooring board. the Results of comparison and analysis are as follows: For thermal conductivity, flooring board decorated with PVC did not show huge differences when temperature was rising and lowering compared to the flooring materials laminated with the existing HPL surface materials. It seems the most meaningful results for using it as indoor flooring materials. That is, in Korea where there is the culture focusing on ondol heating, use amount of heat energy and efficiency of flooring materials are very important and sensitive issues, involving immediately with household economy of final consumers, and it might be a criteria to judge basic performances required as flooring materials. As a result of the analysis on mandatory durability test items such as abrasion resistance, absorption width expansion rate, impact resistance, surface hardness, and impact absorption for flooring materials, compared to flooring board laminated with general HPL surface decoration materials, decoration wood-based flooring board laminated with PVC surface decoration materials which is higher abrasion resistance with smaller transformation and has better durability and impact absorption of the surface, is available for actual application as indoor flooring board, and for replacing surface decoration materials impregnated with heat-hardened resion such as HPL.

Characteristics for VOCs and aldehydes emission rates from architectural flooring (건축용 바닥재로부터의 VOCs와 Aldehydes 방출 특성)

  • Jang, Seong-Ki;Kim, Mi-Hyun;Seo, Soo-Yun;Lee, Woo-Suk;Lim, Jun-Ho;Lim, Jeong-Yun
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.544-552
    • /
    • 2006
  • Emission tests were carried out to investigate the characteristics of concentration according to flooring sort using small chamber method. The target Volatile Organic Compounds (VOC) included 27 individual compounds of environmental concern, which were determined by adsorption sampling and thermal desorption coupled with GC/MS method and by DNPH cartridge/HPLC method. The emission factor of Total Volatile Organic Compounds (TVOC) and Formaldehyde (HCHO) was detected $0.3mg/m^2{\cdot}h$ and $0.2mg/m^2{\cdot}h$ respectively, and the floorings of 37 (9 PVC Tile, 10 PVC Sheet, 18 Flooring) were satisfied emission standard. TVOC emission factor appeared in order of concentration of PVC Sheet, PVC Tile, and floor flooring, while HCHO was detected very high emission factor (as $0.4mg/m^2{\cdot}h$) at floor flooring above PVC series (as $0.001mg/m^2{\cdot}h$).

Distribution of brominated flame retardants and phthalate esters in house dust in Korea

  • Kweon, Deok-Jun;Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.354-363
    • /
    • 2018
  • We examined the levels of brominated flame-retardants (BFRs) including polybrominateddiphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), hexabromocyclododecane (HBCD), and phthalates in indoor dusts in residential houses in Korea, and their distribution patterns depending on building characteristics. Mean concentrations of phthalate esters ($1,825{\mu}g\;g^{-1}$) were significantly higher than that of BFRs (PBDE: $1,332ng\;g^{-1}$, HBCDs: $459ng\;g^{-1}$, and TBBPA: $213ng\;g^{-1}$), indicating more frequent use of phthalate-containing products such as PVC flooring in the Korean houses. PVC flooring house was associated with higher concentrations of DEHP (p = 0.001) and BBP (p = 0.012), indicating that exposure to phthalate was higher in the PVC flooring house. Building age was significantly related with levels of PBDEs especially BDE-47 (p = 0.062), BDE-203 (p = 0.007), DEHP (p = 0.004), and BBP (p = 0.070), respectively, indicating that older buildings can produce higher amounts of PBDEs and phthalates. Our study can provide important information on the sources of BFRs and phthalates in residential houses in Korea.

Research on safety assessment and application effect of nanomedical products in physical education

  • Zhuli Li;Song Peng;Gang Chen
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.253-261
    • /
    • 2023
  • This study investigates the application of nano-composite materials in physical education, specifically focusing on improving the performance of sports hall flooring. The research centers on carbon nanotube reinforced polyvinyl chloride (PVC) composites, which offer enhanced mechanical properties and durability. The incorporation of carbon nanotubes as reinforcements in the PVC matrix provides notable benefits, including increased strength, improved thermal stability, electrical conductivity, and resistance to fatigue. The key parameters examined in this study are the weight percentage of carbon nanotubes and the temperature during the fabrication process. Through careful analysis, it is found that higher weight percentages of carbon nanotubes contribute to a more uniform dispersion within the PVC matrix, resulting in improved mechanical properties. Additionally, higher fabrication temperatures aid in repairing macroscopic defects, leading to enhanced overall performance. The findings of this study indicate that the utilization of carbon nanotube reinforced PVC composites can significantly enhance the strength and durability of sports hall flooring. By employing these advanced materials, the safety and suitability of physical education environments can be greatly improved. Furthermore, the insights gained from this research can contribute to the optimization of composite material design and fabrication techniques, not only in the field of physical education but also in various industries where composite materials find applications.

Application of concrete nanocomposite to improvement in rehabilitation and decrease sports-related injuries in sports flooring

  • Hao Wang;Huiwu Zhang
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2023
  • Currently, polymer matrix nanocomposites (PMCs) are a prominent area of research due to their outstanding mechanical, thermal, and durability properties. The increase in recent studies justifies the possibility of using PMCs in structural retrofitting and reconstruction of damaged infrastructure and serving as new structural material. Using nanotechnology, nanocomposite panels in flooring combine concrete and steel, providing a very high level of performance. In sports flooring, high-performance concrete has become a challenge for reducing sports injuries and refinement in rehabilitation. As a composite material, this type of resistant concrete is one of the most durable and complex multi-phase materials. This article uses polyvinyl alcohol polymer (PVC) and multi-walled carbon nanotubes as concrete matrix fillers. Solution methods have been used for dispersing PVC and carbon nanotubes in concrete. The water-cement ratio, carbon nanotube weight ratio, and heat treatment parameters influenced the concrete nanocomposite's tensile and compressive strength. The dispersion of carbon nanotubes in cement paste and the observation of nano-microcracks in concrete was evaluated by scanning electron microscope (SEM).

Characteristics of VOCs and Formaldehyde Emitted from Floorings (바닥재로부터 방출되는 휘발성유기화합물과 폼알데하이드 특성)

  • Park, Hyun-Ju;Jang, Seong-Ki;Seo, Soo-Yun;Lim, Jun-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • Since the seventies and the oil crisis, energy-saving measures have led to a reduction in the ventilation of room. The use of synthetic materials which emit various chemical substances had led to an increase in the concentration of indoor pollutants. "Sick building syndrome (SBS)" and "Sick house syndrome (SHS)" are worldwide problems. Also, the number of complaints about indoor air pollution caused by VOCs (Volatile organic compound) and HCHO (Formaldehyde) has increased. It is important that evaluating and understanding emission of indoor air pollutant from building materials. The object of this study was to evaluate emission test method for flooring such as wood based flooring, carpet tile, rubber tile, PVC sheet and tile, and to determine emission of TVOC and form-aldehyde. The quantity of TVOC and carbonyl compounds emission were sampled and measured by Tenax TA and gas chromatography/mass spectrometry (GC/MSD), 2,4-DNPH cartrige with ozone scrubber and high performance liquid from flooring. The TVOC concentration emitted from carpet tile was ($7.419\;mg/m^2 h$) the highest among 5 groups of test materials. In wood based flooring and PVC tile, the emitted concentration of toluene was high. And the dodecane emission was highest in carpet. The concentration of TVOC decreased by an increase in emission test period. After 7 days, the concentration of TVOC from floorings were about 50% below of the concentration at the first day. TVOC emission from wood based flooring, carpet tile, rubber tile, PVC sheet and tile were decreased in 28 days and remained steady after about 15 days. The concentration of formaldehyde emission from floorings showed extremely low.

Prevention of Human injury and Countermeasure of evacuation about Fire of Nursing Homes by Conversion of existing buildings - Focused on rural areas in Gwangju and Jeonnam - (기존 건축물을 용도변경한 노인의료복지시설의 화재 인명피해 예방과 피난 대책 -광주·전남 농촌지역을 중심으로-)

  • Kim, Hyun-Tae;Kim, Won-Jin
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.27-36
    • /
    • 2018
  • At present, the elderly population in Korea is 14% of the total population and then We has entered an the society of advanced age. Along with this, elderly people with dementia and palsy are also increasing. The demand for elderly nursing homes for elderly people with severe diseases such as dementia and stroke is also increasing, and the existing buildings are being secured by Conversion of existing buildings. However, it is difficult to evacuate and fire due to the out of date of buildings by Conversion of existing buildings. For example, there is a fire in the Indukukwon, Pohang City and Hyosung Geriatric Hospital, Jangseong in Korea, which have changed the use of existing buildings. Many elderly people died in a night fire. It was because of the sandwich panel walls and PVC flooring material produced toxic gas instantly. In this study, we investigated the nursing home that changing the use and established fire prevention of human injury and countermeasure of evacuation. First, the sandwich panels which leading to deaths due to the toxic gas were installed in most nursing home. We recommend the RC, the masonry wall, and the glass fiber panel instead of the sandwich panels, In addition, the PVC flooring is most used in nursing home, the flooring material is considered such as the building stones, the tile, and the yellow soil closing instead of the PVC flooring. Second, we investigated the installation status of fire fighting equipment. As a result, the automatic-emergency open&shut equipment, the smoke ventilator and the evacuation slide were rarely installed. In order to secure the golden time in case of fire and to prevent the asphyxia caused by the toxic gas, the law should be amended to install the equipment.

Hazard Assessment of Combustion Gases from Interior Materials (주요 건축 내장재의 연소가스 유해성 평가)

  • Seo, Hyun Jeong;Son, Dong Won
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Toxic gases from five types of interior building materials were investigated according to Naval Engineering Standard (NES) 713. The materials were plywood, indoor wall coverings (wood wall plate members and pine wood), reinforced Styrofoam insulation, laminate flooring, and PVC. Specimens were measured using an NES 713 toxicity test apparatus to analyze the hazardous substances in combustion gas from the materials. We used the US Department of Defense standard (MIL-DTL, Military Standard) to calculate the toxicity index of the combustion gas. Emissions of $CO_2$ from all specimens did not exceed the NES 713 limit of 100,000 ppm. The amount of CO gas emissions from reinforced Styrofoam insulation was 6,098 ppm. 25 ppm and 49 ppm of formaldehyde were released from the reinforced Styrofoam insulation and PVC flooring, respectively. These values were less than the limit of 400 ppm. The highest emissions were from $NO_X$ emitted by plywood and were above the limit of 250 ppm. The toxicity index of the specimens were calculated as 5.19 for plywood, 4.13 for PVC flooring, 2.35 for reinforced Styrofoam insulation, 2.34 for laminate flooring, and 1.22 for indoor wall coverings (pine wood). Our research helps us to understand the properties of these five interior materials by analyzing the combustion gas and explaining the toxicity of constituents and the toxicity index. Also, it would be useful for giving fundamentals to guide the safe use of interior materials for applications.

Analysis of Surface Heat Characteristics by Decoration Wood-based Wood Flooring Board (치장목질마루판 종류별 표면열전달성 분석)

  • Park, Cheul-Woo;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.171-172
    • /
    • 2017
  • There is some recognition that Decoration Wood-based Flooring Board in Korea is a material that inhibits the heat transfer from the substrate to the room. There is a lack of substantial research literature on the surface heat transfer and condition of Decoration Wood-based Flooring Board, which is insufficient to deal with false perceptions. In this study, the purpose of this study is to analyze the surface heat transfer characteristics of Decoration Wood-based Flooring Board and to obtain basic data to cope with recognition.

  • PDF

Investigation on Material Flow Diagram for PVC(poly vinyl Chloride) Profile Based Production, Generation, Recycling and Treatment (PVC재질 프로파일의 생산, 발생 및 재활용, 처리에 기반한 물질흐름도 검토)

  • Phae, Chae-Gun;Jung, Oh-Jin
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.129-140
    • /
    • 2012
  • The objective of this study was to estimate the practical recycling rate of plastic products, so that the study was conducted to build material flow diagram for PVC profile. For this objective, product generation, waste generation and recycling status were investigated. Using collected and analyzed status data, analysis of material flow by product and building material flow diagram were conducted. As result of estimating the recycling rate by product, The sum of domestic demand was 525,448 ton and waste generation was 105,853ton in PVC flooring and profile. The sum of generation of recycling product and raw material was investigated to be 76,004ton(14.46%), which is higher compared to recycling obligation(8.5%) in 2009. To build the material flow diagram in the years(5~20years) ahead, prediction of future demand was based on the assumption that there will be no difference in annual generation of current and future. As the recycling rate of flooring and profile increases, it is estimated to reach 20% in 2013 according to the material flow diagram.