• Title/Summary/Keyword: PVA섬유

Search Result 243, Processing Time 0.035 seconds

An Experimental Study on the Influence of Maximum Size of Coarse Aggregate on the Properties of Ductile Concrete using PVA Fibers (PVA섬유를 사용한 고인성 콘크리트의 특성에 미치는 굵은골재 최대치수의 영향에 관한 실험적 연구)

  • Kim, Jong-Hyun;Hwang, Moon-Gyu;Kim, Jae-Hwan;Nam, Jae-Hyun;Lee, Sang-Soo;Kim, Eul-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.385-388
    • /
    • 2006
  • In this study, I examined hardening and non-hardening of the DFRCC (Ductile Fiber Reinforced Cementitious Composites) according to maximum size of coarse aggregate and the diameter of PVA (Poly Vinyl Alcohol) to develope PVA fiber reinforced concrete with the feature of DFRCC. As a result of this study, the fresh properties is similar regardless of maximum size of coarse aggregate. The bending stress and bending stress-displacement of DFRC showed big differences according to maximum size of coarse aggregate and diameter.

  • PDF

Preparation and Characterization of Nanoscaled Poly(vinyl alcohol) fibers via Electrospinning

  • Ding, Bin;Kim, Hak-Yong;Lee, Se-Chul;Lee, Douk-Rae;Choi, Kyung-Ju
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.73-79
    • /
    • 2002
  • Nanoscaled PVA fibers were prepared by electrospinning. This paper described the electrospinning process, the processing conditions fiber morphology, and some potential applications of the PVA nato-fibers. PVA fibers with various diameters (50-250 nm) were obtained by changing solution concentration, voltage and tip to collector distance (TCD). The major factor was the concentration of PVA solution which affected the fiber diameter evidently. Increasing the concentration, the fiber diameter was increased, and the amount of beads was reduced even to 0%. The fibers were found be efficiently crosslinked by glyoxal during the curing process. Phosphoric acid was used as a catalyst activator to reduce strength losses during crosslinking. Scanning electron micrograph (SEM) and differential scanning calorimetric (DSC) techniques were employed to characterize the morphology and crosslinking of PVA fibers. It was fecund that the primary factor which affected the crosslinking density was the content of chemical crosslinking agent.

Evaluation on the Durability of PVA Fiber Reinforced Mortar for Repair (PVA 섬유 보강 보수 모르타르의 내구성 평가)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Su-Tae;Yoon, Pil-Yong;Kim, Jin-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.621-624
    • /
    • 2006
  • In this study, the repair method using PVA fiber reinforced mortar evaluated on durability performance. Test of salt injury, carbonation, freezing-thawing, chemical attack, permeability was performed As for the test results, it was found that durability performance of the repair method using PVA fiber mortar showed more better than the existing repair method. Therefore, appling on the repair method using PVA fiber reinforced mortar, the repaired concrete structures can be increased to service life.

  • PDF

Fabrication of Lignin Nanofibers Using Electrospinning (전기방사를 이용한 리그닌 나노섬유의 제조)

  • Lee, Eunsil;Lee, Seungsin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.372-385
    • /
    • 2014
  • Lignin is an abundant natural polymer in the biosphere and second only to cellulose; however, it is under-utilized and considered a waste. In this study, lignin was fabricated into nanofibers via electrospinning. The critical parameters that affected the electrospinnability and morphology of the resulting fibers were examined with the aim to utilize lignin as a resource for a new textile material. Poly(vinyl alcohol) (PVA) was added as a carrier polymer to facilitate the fiber formation of lignin, and the electrospun fibers were deposited on polyester (PET) nonwoven substrate. Eleven lignin/PVA hybrid solutions with a different lignin to PVA mass ratio were prepared and then electrospun to find an optimum concentration. Lignin nano-fibers were electrospun under a variety of conditions such as various feed rates, needle gauges, electric voltage, and tip-to-collector distances in order to find an optimum spinning condition. We found that the optimum concentration for electrospinning was a 5wt% PVA precursor solution upon the addition of lignin with the mass ratio of PVA:lignin=1:5.6. The viscosity of the lignin/PVA hybrid solution was determined as an important parameter that affected the electrospinning process; in addition, the interrelation between the viscosity of hybrid solution and the electrospinnability was examined. The solution viscosity increased with lignin loading, but exhibited a shear thinning behavior beyond a certain concentration that resulted in needle clogging. A steep increase in viscosity was also noted when the electrospun system started to form fibers. Consequently, the viscosity range to produce bead-free lignin nanofibers was revealed. The energy dispersive X-ray analysis confirmed that lignin remained after being transformed into nanofibers. The results indicate the possibility of developing a new fiber material that utilizes biomass with resulting fibers that can be applied to various applications such as filtration to wound dressing.

The Drawability of Iodinated at Solution Before Casting Polyvinyl Alcohol Films and Structure and Properties of Maximum-Drawn Films After Deiodination (성형 전 용액상태에서 요드화된 폴리비닐알코올 섬유의 연신 및 요드제거)

  • 신은주;이양헌;박찬헌;최석철
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.348-349
    • /
    • 2003
  • PVA는 열가소성 고분자임에도 불구하고 융점(230~25$0^{\circ}C$)에 이어 바로 측쇄의 분해(270 $^{\circ}C$)가 시작되므로 공정상 많은 어려움을 가지고 있다. 그러나 요드와 같은 극성의 가소제를 사용하면 결정영역 까지도 가소화 시킬 수 있는 이점이 있어 PVA 유연성, 가공성 둥의 성질을 개선시킬 수 있다. [1-3] 특히 본 연구에서 성형 전 요드화된 폴리비닐알코올 필름을 제작하여 구조를 살펴본 결과, 결정성이 많이 감소하다가 요드흡착량이 150%의 경우에서는 무정형상태까지 나타났다. (중략)

  • PDF

Fluorescence Characteristic Analysis for Fiber Detection in Sectional Image of Fiber Reinforced Cementitious Composite (섬유 보강 시멘트계 복합재료의 단면 이미지에서 섬유 검출을 위한 섬유 형광 특성 분석)

  • Lee, Bang-Yeon;Park, Jun-Hyung;Kim, Yun-Yong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.50-57
    • /
    • 2010
  • It is important to detect fibers in the sectional image of fiber reinforced cementitious composites (FRCC), since the fiber distribution is a crucial factor to predict or evaluate the mechanical performance of FRCC. In this paper, we investigated the fluorescence characteristics of Polyvinyl Alcohol (PVA) fibers, Polyethylene Terephthalate (PET) fibers, Polyethylene (PE) fibers, and Polypropylene (PP) fibers used in Engineered Cementitious Composites (ECC), which is a special kind of FRCC that incorporates synthetic fibers and exhibits extremely ductile behavior in uniaxial tension, to detect each fiber according to its type. Furthermore, optimum excitation and emission wavelengths were proposed on the basis of maximum difference of Relative Fluorescence Intensity (RFI) between two types of fibers used in the hybrid ECC. Optimum threshold values to discriminate two types of fibers using statistical tools were also proposed. Finally, images of four types of fibers obtained using a fluorescence microscope are compared.

Correlation Between Flexural Toughness and Cracking Characteristics of Micro-fiber Reinforced Mortar According to Fiber Contents (마이크로 섬유보강 모르타르의 휨 인성과 균열 특성의 상관관계)

  • Shin, Kyung-Joon;Jang, Kyu-Hyou;Kim, Eui Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.249-257
    • /
    • 2008
  • Various methods have been used to reinforce the cementitious material such as mortar and concrete that have weak tensile strength. Major reinforcing method is to mix matrix with fibers which have strong tensile strength. Recently, micro-fiber reinforced mortar has been studied which removes coarse aggregate and uses micro-fiber with small diameter in order to homogenize the matrix properties and maximize the performance of fiber. Performance of micro-fiber reinforced mortar showing multiple cracking behavior is hardly represented only by the flexural toughness. Therefore, This paper reports the cracking behavior as well as mechanical behavior for various mixtures which have different fiber type and mixture proportions to find the proper parameter representing the cracking characteristic. Correlations between flexural toughness and various cracking characteristics such as cracking area, width and number are explored. As a result, it is found that flexural toughness, volume of fiber and number of cracks are suitable for representing the characteristics of micro-fiber reinforced mortar.

Improvement and Evaluation of Structural Performance of Reinforced Concrete Beam using High Ductile Fiber-Reinforced Mortar with Ground Granulated Blast Furnace Slag (고로슬래그미분말을 혼입한 고인성섬유 복합모르타르를 이용한 철근콘크리트 보의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Lee, Dong-Ryul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.142-152
    • /
    • 2010
  • In this study, eleven reinforced concrete beams, without stirrup, using high ductile fiber-reinforced mortar with ground granulated blast furnace slag(SHF Series, SHFSC Series) and standard specimens without or with stirrup(SSS, BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the shear performance of such test specimens, such as the load-displacement, the failure mode, the maximum strength, and shear strength. All the specimens were modeled in scale-down size. Test results showed that test specimens(SHF Series, SHFSC Series) was increased respectively the shear strength carrying capacity by 26%, 20% and the ductility capacity by 5.27, 5.75 times in comparison with the standard specimen without stirrup(SSS). And the specimens(SHF Series, SHFSC Series) showed enough ductile behavior and stable flexural failure.

Improvement of Structural Performance of RC Beams retrofitted Hybrid Fiber using Recycled Coarse Aggregate and Ground Granulated Blast Furnace Slag (순환굵은골재 및 고로슬래그 미분말을 사용한 하이브리드섬유보강 철근콘크리트 보의 구조성능 개선)

  • Yi, Dong-Ryul;Ha, Gee-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, thirteen reinforced concrete beams, ground granulated blast furnace slag, replacing recycled coarse aggregate with PVA fiber (BSPG series) and recycled coarse aggregate with hybrid fiber ($BSPGR_1$, $BSPGR_2$ series), and standard specimen (BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the Structural performance of such test specimens, such as the load-displacement, the failure mode, and the maximum load carrying capacity. All the specimens were modeled in 1/2 scale-down size. Test results showed that test specimens ($BSPGR_1$, $BSPGR_2$ series) was increased the compressive strength by 13%, the maximum load carrying capacity by 4~21% and the ductility capacity by 4~28% in comparison with the standard specimen (BSS). And the specimens ($BSPGR_1$, $BSPGR_2$ series) showed enough ductile behavior and stable flexural failure.

Improvement and Evaluation of Seismic Performance of Flat Plate Slab-Column Joint Using High Ductile Fiber-Reinforced Mortar (고인성섬유 복합모르타르를 활용한 플랫 플레이트 슬래브-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Yi, Dong-Ryul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.341-349
    • /
    • 2012
  • Recently, as structures in Korea and other countries become much taller, larger, and more specialized, concrete used for constructions of these structures is required to have high performance characteristics. Especially, seismic performance of concrete must be improved to resist cyclic loading from earthquakes. Consequently, this study was performed to focus on developing optimal mixtures of high ductile fiber reinforced mortar with high ductility and durability, which have good serviceability, stability and reliability performances. Eventually, this material is expected to improve seismic performance of concrete structures such as load carrying capacity, ductility capacity, and energy dissipation capacity when applied to critical regions of flat plate slab-column joint. Ultimately, this research is intended to develop a material for basic designs and practical constructions of reinforced concrete structures. Test results showed that the maximum load carrying capacity, the ductility capacity, and the energy dissipation capacity of the test specimens titled RCFPP series were increased by 15%~34%, by 33%~37%, and by 2.14 times, respectively, compared to those of the standard specimen titled SRCFP.