• Title/Summary/Keyword: PV-ESS system

Search Result 69, Processing Time 0.023 seconds

Economic Feasibility Analysis of Electrical Vehicle Charging Station Connected with PV & ESS based on ESS Valuation (ESS 가치평가 기반 PV-ESS 연계 EV 충전스테이션 사업 타당성 분석)

  • Ji Hyun Lee;Seong Jegarl;Yong Chan Jung;Ah-Yun Yoon
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.124-133
    • /
    • 2023
  • In order to deploy the large-scale energy storage (ES) service in the various industry, it is very important to develop a business model with high technological and economic feasibility through detailed valuation of cost and expected benefits. In relation to this, this paper established an optimal scheduling plan for electric vehicle charging stations connected with photovoltaic (PV) and ES technologies in Korea using the distributed energy resource valuation tool and analyzed the feasibility of the project. In addition, the impact of incentives such as REC (Renewable Energy Certificate) to be given to electric vehicle charging stations in accordance with the relevant laws to be revised in the future was analyzed. As a results, the methodology presented in this paper are expected to be used in various ways to analyze the feasibility of various business models linked to renewable energy and ES technologies as well as the electric vehicle market.

Stochastic Real-time Demand Prediction for Building and Charging and Discharging Technique of ESS Based on Machine-Learning (머신러닝기반 확률론적 실시간 건물에너지 수요예측 및 BESS충방전 기법)

  • Yang, Seung Kwon;Song, Taek Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2019
  • K-BEMS System was introduced to reduce peak load and to save total energy of the 120 buildings that KEPCO headquarter and branch offices use. K-BEMS system is composed of PV, battery, and hybrid PCS. In this system, ESS, PV, lighting is used to save building energy based on demand prediction. Currently, neural network technique for short past data is applied to demand prediction, and fixed scheduling method by operator for ESS charging/discharging is used. To enhance this system, KEPCO research institute has carried out this K-BEMS research project for 3 years since January 2016. As the result of this project, we developed new real-time highly reliable building demand prediction technique with error free and optimized automatic ESS charging/discharging technique. Through several field test, we can certify the developed algorithm performance successfully. So we will describe the details in this paper.

PMS for Intelligent Linkage between PV and Energy Storage System (ESS) (태양광발전(PV)과 에너지저장장치(ESS)의 지능적 연계를 위한 PMS 구현)

  • Min, Byoung-Bin;Hwang, Jae-Chang;Kim, Jun-Yong;Hwang, Kyu-Seok;Ryu, Kang-Ryul
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.413-414
    • /
    • 2020
  • 세계적인 에너지 전환 흐름을 기반한 깨끗하고 안전한 에너지공급을 위해 석탄, 원전을 감축하고 재생에너지의 확대와 에너지 다소비 구조를 선진국형 에너지 고효율, 저소비로 전환며, 분산형 에너지 시스템을 확대에 따라 다양한 에너지 운영환경이 형성. 이에 맞게 새로운 운영방식의 융복합 모델 개발의 필요성이 증가하고 있다. 융복합 모델의 효율적 운영을 위해서는 발전시스템의 요소별 운전 정보를 수집, 분석하여 제어할 수 있는 능동형 제어가 필요하다. 본 문에서는 태양광발전(PV)을 연계한 ESS(Energy Strorage System)의 효율적인 전력제어를 위한 PMS를 개발하여 성능 검증하고자 한다.

  • PDF

Optimal Design of Urban MICROGRID using Economical Analysis Program (경제성분석 프로그램을 이용한 도심형 마이크로그리드 최적 설계)

  • Seung-Duck, Yu;SungWoo, Yim;Youseok, Lim;SungWook, Hwang;JuHak, Lee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.69-72
    • /
    • 2022
  • This paper actually investigates the load on major large-scale buildings in the downtown area, examines the economic feasibility of installing PV and ESS in a microgrid target building, and evaluates whether an electric vehicle capable of V2G through two buildings is effective as an economical analysis program (HOMER) was analyzed using. It is economical to install a mixture of ESS rather than using the whole PV, and it is shown that if there is an electric vehicle using the V2G function of EV, there is an economic effect to replace the PV. So that Incentives and policies are needed to replace a large area of PV and utilize the existing parking lot to lead EV as a resource of the microgrid. Currently, P2X technology that stores power as ESS or converts it to other energy to control when surplus renewable energy occurs in large-capacity solar power plants and wind farms, etc. This is being applied, and efforts are being made to maintain the stability of the system through the management of surplus power, such as replacing thermal energy through a heat pump. Due to the increase in electric vehicles, which were recognized only as a means of transportation, technologies for using electric vehicles are developing. Accordingly, existing gas stations do not only supply traditional chemical fuels, but electricity, and super stations that also produce electricity have appeared. Super Station is a new concept power plant that can produce and store electricity using solar power, ESS, V2G, and P2G. To take advantage of this, research on an urban microgrid that forms an independent system by tying a large building and several buildings together and supplies power through a super station around the microgrid is in full swing.

A Research on PV-connected ESS dissemination strategy considering the effects of GHG reduction (온실가스감축효과를 고려한 태양광 연계형 에너지저장장치(ESS) 보급전략에 대한 연구)

  • Lee, Wongoo;KIM, Kang-Won;KIM, Balho H.
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • ESS(Energy Storage System) is an important source that keeps power supply stable and utilizes electricity efficiently. For example, ESS contributes to resolve power supply imbalance, stabilize new renewable energy output and regulate frequency. ESS is predicted to be expanded to 55.9GWh of installed capacity by 2023, which is 30 times more than that of 2014. To raise competitiveness of domestic ESS industry in this increasing world market, we have disseminated load-shift ESS for continuous power supply imbalance with FR ESS, and also necessity to secure domestic track record is required. However in case of FR ESS, utility of installing thermal power plant is generally generated within 5% range of rated capacity, so that scalability of domestic market is low without dramatic increase of thermal power plant. Necessity of load-shift ESS dissemination is also decreasing effected by surplus backup power securement policy, raising demand for new dissemination model. New dissemination model is promising for $CO_2$ reduction effect in spite of intermittent output. By stabilizing new renewable energy output in connection with new renewable energy, and regulating system input timing of new renewable energy generation rate, it is prospected model for 'post-2020' regime and energy industry. This research presents a policy alternatives of REC multiplier calculation method to induce investment after outlining PV-connected ESS charge/discharge mode to reduce GHG emission, This alternative is projected to utilize GHG emission reduction methodology for 'Post-2020' regime, big issue of new energy policy.

Environmental Assessment of Smart Grid Station Project Centered on Pilot Project of Korea Electric Power Corporation Building

  • Park, Sun-Kyoung;Son, Sung-Yong;Kim, Dongwook;Kim, Buhm-Kyu
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.217-229
    • /
    • 2016
  • Increased evidences reveal that the global climate change adversely affect on the environment. Smart grid system is one of the ways to reduce greenhouse gas emissions in the electricity generation sector. Since 2013, Korea Electric Power Corporation (KEPCO) has installed smart grid station in KEPCO office buildings. The goal of this paper is two folds. One is to quantify the reduction in greenhouse gas emissions through smart grid stations installed in KEPCO office buildings as a part of pilot project. Among components of smart grid stations, this research focused on the photovoltaic power system (PV) and energy storage system (ESS). The other is to estimate the reduction in greenhouse gas emissions when PV is applied on individual houses. Results show that greenhouse gas emissions reduce 5.8~11.3% of the emissions generated through the electricity usage after PV is applied in KEPCO office buildings. The greenhouse gas emissions reduction from ESS is not apparent. When PV of 200~500 W is installed in individual houses, annual greenhouse gas emission reduction in 2016 is expected to be approximately $2.2{\sim}5.4million\;tCO_2-eq$, equivalent to 6~15% of greenhouse gas emissions through the electricity usage in the house hold sector. The saving of annual electricity cost in the individual house through PV of 200 W and 500 W is expected to be 47~179 thous and KRW and 123~451 thousand KRW, respectively. Results analyzed in this study show the environmental effect of the smart grid station. In addition, the results can be further used as guidance in implementing similar projects.

Review of Dual Active Bridge Converter Applied to PV-ESS Hybrid System (태양광-ESS 하이브리드 시스템에 적용되는 DAB 컨버터 리뷰)

  • Lee, HanWoo;Lee, KyungSoo
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.385-386
    • /
    • 2020
  • 최근, 에너지저장장치를 활용하여 태양광-ESS 하이브리드 시스템이 도입되고 있다. 태양광-ESS 하이브리드 시스템은 구성방식에 따라 다양한 전력변환장치를 활용한다. 그중 DAB 컨버터는 절연형이며, 양방향 전력전달이 가능하므로 스위칭 기법, 토폴로지 개발 등 연구가 활발히 진행되고 있다. 본 논문에서는 태양광-ESS 하이브리드 시스템에 적용되는 대표적인 벅-부스트 컨버터와 DAB 컨버터에 대해 리뷰한다.

  • PDF

The bidirectional DC module type PCS design for the System Inter Connection PV-ESS of Secure to Expandability (계통 연계 PV-ESS 확장성 확보를 위한 병렬 DC-모듈형 PCS 설계)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Byung-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.56-69
    • /
    • 2021
  • In this paper, the PV system with a link to the commercial system needs some advantages like small capacity, high power factor, high reliability, low harmonic output, maximum power operation of solar cell, and low cost, etc. as well as the properties of inverter. To transfer the PV energy of photovoltaic power generation system to the system and load, it requires PCS in both directions. The purpose of this paper is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. In order to achieve these purpose, 5 step process of operation mode algorithm were used according to the solar insolation amount and load capacity and the controller for charging/ discharging control was designed. For bidirectional and effective energy transfer, the bidirectional converter and battery at DC-link stage were connected and the DC-link voltage and inverter output voltage through the interactive inverter were controlled. In order to prove the validity of the suggested system, the simulation using PSIM was performed and were reviewed for its validity and stability. The 3[kW] PCS was manufactured and its test was conducted in order to check this situation. In addition, the system characteristics suggested through the test results was verified and the PCS system presented in this study was excellent and stronger than that of before system.

ESS Connected PV Monitoring System Supporting Redundant Communications (통신 이중화를 지원하는 ESS연계 태양광 모니터링 시스템)

  • Joo, Jong-Yul;Lee, Young-Jae;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 2018
  • The systems associated with the ESS never stop. It runs 24 hours everyday. The system must be managed to run. The ESS system should perform normally even if the power IT equipment fails or communication failure occurs. Therefore, there is a need for a system that actively addresses, manages and controls the high precision power data of the ESS, even if a variety of failures occur. I would like to propose a power management communication unit to cope with the occurrence of communication failure. This paper also includes an integrated management system that can perform micro grid site management, maintenance and monitoring for the ESS system connected with the solar power generation facility.

A Study on the Method to Evaluate Minimum Capacity of Energy Storage System(ESS) for Micro-Grid Design (마이크로그리드(MG)의 설계를 위한 에너지저장장치(ESS)의 최소용량산정 기법에 관한 연구)

  • Lee, Jae-Gul;Shin, Jeong-Hoon;Choy, Young-Do;Nam, Su-Chul;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.52-58
    • /
    • 2009
  • In this paper, we propose a probability method to determine minimum capacity of energy storage system(ESS) for Micro-grid Because of high capital cost of ESS, It's very important to determine optimal capacity of ESS and for stable operation of Micro grid(MG), we should determine minimum capacity of ESS. The proposed method has abilities to consider forced outage rate of generators and intermittent of non-dispatchable generators and minimum capacity make MG keep energy balancing by oneself.