• Title/Summary/Keyword: PV power system

Search Result 1,106, Processing Time 0.033 seconds

A Three-phase Hybrid Power Flow Algorithm for Meshed Distribution System with Transformer Branches and PV Nodes

  • Li, Hongwei;Wu, Huabing;Jiang, Biyu;Zhang, Anan;Fang, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-75
    • /
    • 2016
  • Aiming at analyzing the power flow of the distribution systems with distribution transformer (DT) branches and PV nodes, a hybrid three-phase power flow methodology is presented in this paper. The incidence formulas among node voltages, loop currents and node current injections have been developed based on node-branch incidence matrix of the distribution network. The method can solve the power flow directly and has higher efficiency. Moreover, the paper provides a modified method to model DT branches by considering winding connections, phase shifting and off-nominal tap ratio, and then DT branches could be seen like one transmission line with the proposed power flow method. To deal with the PV nodes, an improved approach to calculate reactive power increment at each PV node was deduced based on the assumption that the positive-sequence voltage magnitude of PV node is fixed at a given value. Then during calculating the power flow at each iteration, it only needs to update current injection at each PV node with the proposed algorithm. The process is very simple and clear. The results of IEEE 4 nodes and the modified IEEE 34 nodes test feeders verified the correctness and efficiency of the proposed hybrid power flow algorithm.

A Study on the Design and Power Performance of a Variable Photovoltaic Lightshelf Mounted on the Windows (창호거치 태양광발전 가변형광선반 설계 및 기초적 발전성능에 관한 연구)

  • Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.105-111
    • /
    • 2013
  • This study aims to suggest the PV lightshelf and to evaluate the power performance of the photovoltaic systems easily mounted on the windows. For the study, the suggested systems consist of two parts as fixed and movable PV modules. Also, tempered glass and polycarbonate are used on the surface protection materials for solar cells of PV lightshelf. By using polycarbonate, the weight of PV lightshelf is lighter about 20%. The field tests are performed for five days by using real size models. The voltage, current and electric powers are measured as basic performances of PV lightshelf. Also, the irradiation, brightness and module surface temperature are measured as outside conditions. As results, the power performance of tempered glass PV lightshelf shows about 11(%) higher thant that of polycarbonate PV lightshelf. And the power performance shows about 5(%) higher in a horizontal system. This results could be used to develop the effective PV lightshelf in next study.

Novel control algorithm for smart PCS with harmonics and reactive power compensation (고조파와 무효전력 보상기능을 가지는 Smart PCS의 새로운 제어 알고리즘)

  • Seo, Hyo-Ryong;Jang, Seong-Jae;Park, Sang-Soo;Kim, Sang-Yong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1053_1054
    • /
    • 2009
  • A significant number of renewable energy systems have been connected to the grids as supplement power source. The renewable energy systems require control algorithm to maintain the power-supply reliability and quality. This paper proposes a novel control algorithm for smart Power Conditioning System (PCS) with harmonics and reactive power compensation. The smart PCS is used to feed Photovoltaic (PV) power to utility and compensate harmonics and reactive power at the same time. The experimentation is carried out on the proposed grid-connected PV generation system, and controlled by digital signal processor. The grid-connected PV generation system injects PV energy into the grid and performs as Active Filter (AF) and Static Synchronous Compensator (STATCOM) without additional devices. The experiment results show that the proposed control algorithm is effective for smart PCS with harmonics and reactive power compensation.

  • PDF

Performance Evaluation of a Solar Tracking PV System with Photo Sensors (포토센서를 이용한 태양위치 추적기의 성능분석에 관한 연구)

  • Jeong, Byeong-Ho;Cho, Geum-Bae;Lee, Kang-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.67-73
    • /
    • 2013
  • The conversion of solar radiation into electrical energy by Photo-Voltaic (PV) effect is a very promising technology, being clean, silent and reliable, with very small maintenance costs and small ecological impact. The output power produced by the PV panels depends strongly on the incident light radiation. The continuous modification of the sun-earth relative position determines a continuously changing of incident radiation on a fixed PV panel. The point of maximum received energy is reached when the direction of solar radiation is perpendicular on the panel surface. Thus an increase of the output energy of a given PV panel can be obtained by mounting the panel on a solar tracking device that follows the sun trajectory. Tracking systems that have two axes and follow the sun closely at all times during the day are currently the most popular. This paper presents research conducted into the performance of Solar tracking system with photosensors. The results show that an optimized dual-axis tracking system with photosensor performance and analysis. From the obtained results, it is seen that the sun tracking system improves the energy and energy efficiency of the PV panel.ti-junction CPV module promises to accelerate growth in photovoltaic power generation.

Simulator Development for Stand Alone PV System Design (태양광발전 시스템 설계를 위한 시뮬레이터 개발)

  • Kang, S.Y.;Kim, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.383-388
    • /
    • 2003
  • The stand alone PV system's stability and cost is influenced by a design method, as its application products are various. In order to systematize the the stand alone PV system's design method based on experience, this research settled the capacity computation method of PV module and battery and developed a simulator. And Its characteristic is confirmed by applying to PV street lamp design.

  • PDF

Power Conditioning for a Small-Scale PV System with Charge-Balancing Integrated Micro-Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Seo, Jung-Won;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1318-1328
    • /
    • 2015
  • The photovoltaic (PV) power conditioning system for small-scale applications has gained significant interest in the past few decades. However, the standalone mode of operation has been rarely approached. This paper presents a two-stage multi-level micro-inverter topology that considers the different operation modes. A multi-output flyback converter provides both the DC-Link voltage balancing for the multi-level inverter side and maximum power point tracking control in grid connection mode in the PV stage. A modified H-bridge multi-level inverter topology is included for the AC output stage. The multi-level inverter lowers the total harmonic distortion and overall ratings of the power semiconductor switches. The proposed micro-inverter topology can help to decrease the size and cost of the PV system. Transient analysis and controller design of this micro-inverter have been proposed for stand-alone and grid-connected modes. Finally, the system performance was verified using a 120 W hardware prototype.

A Flyback-Assisted Single-Sourced Photovoltaic Power Conditioning System Using an Asymmetric Cascaded Multilevel Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2272-2283
    • /
    • 2016
  • This paper proposes a power conditioning system (PCS) for distributed photovoltaic (PV) applications using an asymmetric cascaded multilevel inverter with a single PV source. One of the main disadvantages of the cascaded multilevel inverters in PV systems is the requirement of multiple isolated DC sources. Using multiple PV strings leads to a compromise in either the voltage balance of individual H-bridge cells or the maximum power point tracking (MPPT) operation due to localized variations in atmospheric conditions. The proposed PCS uses a single PV source with a flyback DC-DC converter to facilitate a reduction of the required DC sources and to maintain the voltage balance during MPPT operation. The flyback converter is used to provide input for low-voltage H-bridge cells which processes only 20% of the total power. This helps to minimize the losses occurring in the proposed PCS. Furthermore, transient analyses and controller design for the proposed PCS in both the stand-alone mode and the grid-connection mode are presented. The feasibility of the proposed PCS and its control scheme have been tested using a 1kW hardware prototype and the obtained results are presented.

Energy Management Strategy and Adaptive Control for SMES in Power System with a Photovoltaic Farm

  • Kim, Seung-Tak;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1182-1187
    • /
    • 2014
  • This paper proposes an energy management strategy and adaptive control for superconducting magnetic energy storage (SMES) in a distribution power system with a grid-connected photovoltaic (PV) farm. Application of the SMES system can decrease the output power fluctuations of PV system effectively. Also, it can control the real and reactive powers corresponding to the scheduled reference values with adequate converter capacity, which are required at a steady-state operating point. Therefore, the adaptive control strategy for SMES plays a key role in improving the system stability when the PV generation causes uncertain variations due to weather conditions. The performance of proposed energy management strategy and control method for the SMES is then evaluated with several case studies based on the PSCAD/EMTDC$^{(R)}$ simulation.

A Study on the Technical Standard of Micro-Inverter for Domestic Photovoltaic Power Generation (국내 태양광발전용 마이크로 인버터 기술기준에 관한 연구)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.175-180
    • /
    • 2019
  • In order to overcome the drawbacks of low rated power of the string inverter, the necessity of micro -inverters and future development directions will be examined by comparing the power conditioner system with existing PCS using micro inverter. Currently, string inverters have been used in household solar power generation systems, and research and penetration of micro-inverters(PV-MIC) have been expanding, which can overcome the shortcomings of string inverters starting from Europe. However, in the PV inverter industry, precise technical standards, test measurement equipment and related test methods for micro-inverters(PV-MIC) are obstacles to product development. Therefore, in this paper, considering the characteristics of micro-inverter (PV-MIC), it aims to make it competitive so that it does not lag behind advanced technology change through test measurement equipment and related technical standard.

Deterioration and Abnormality Condition Diagnosis through Measuring the DC Capacitor Capacity of PV Inverter (태양광 인버터의 DC 커패시터 용량 측정을 통한 열화 및 이상상태 진단)

  • Yongho Yoon;Sungin Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.135-140
    • /
    • 2024
  • DC capacitors used in PV inverters have a relatively short lifespan compared to other power semiconductor devices and have a failure rate of 60%, making them the most vulnerable among the elements that make up a power conversion system (PCS). In addition, the lifespan of the capacitor varies depending on environmental factors, greatly affecting the lifespan and operating conditions of PV inverters and PV power generation systems. Therefore, research is needed on the development of inverter deterioration diagnostic sensor technology optimized for building-integrated and general PV power generation systems and the development of bypass compensation capacitor modules that can maintain the efficiency of the inverter in the event of a failure. Based on this research, the DC capacitor deterioration diagnosis module inside the PV inverter measures the capacity of the actual internal components and can check the trend information of the deterioration state in the long term, enabling rapid response to fires. In addition, it seeks to improve the efficiency of power generation facilities and reduce carbon emissions, and prevents electrical fires, allowing the PV power generation system to be maintained in optimal condition.