• Title/Summary/Keyword: PV power

Search Result 1,501, Processing Time 0.023 seconds

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

Analysis of Stability of PV System using the Eigenvalue according to the Frequency Variation and Requirements of Frequency Protection

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.480-485
    • /
    • 2012
  • Use of photovoltaic (PV) power generation system will become more widespread in the future due to anticipated cost reduction in PV technology. As the capacity of PV systems increases, a variation of power system frequency may prevent the stable output of PV system. However, the standard for the frequency protection of distributed generation in Korea Electric Power Corporation (KEPCO)'s rule does not include the setting of frequency protection. Therefore, this paper analyzes the correlation between the frequency protection requirements and the stability of grid-connected PV system for the adjustable operating setting of frequency protection. The distribution system interconnected with 3 MW PV system is modeled by Matlab/Simulink. The various values of frequency are simulated. For studied cases, the stability of PV system is analyzed. It is concluded that the setting of frequency protection is necessary to consider the stability of PV system.

Diagnosis Method of Output Power Lowering of PV System by Using Kalman Filter Algorithm (Kalman Filter 알고리즘을 이용한 태양광 발전 시스템의 출력저하 진단법)

  • Kang, Byung-Kwan;Kim, Seung-Tak;Lee, Hyun-Gu;Bae, Sun-Ho;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1537-1546
    • /
    • 2011
  • The photovoltaic(PV) generation system have recently become widely used to solve the environmental problems and running out of fossil fuels. However, the study on maintenance is inadequate for PV system. This paper proposes the novel diagnosis method of output power decline to maintain the normal output performance of PV array. The diagnosis method used the proportional relation of irradiation-output current(S-I) of PV array at maximum power point(MPP). And, first order polynomial using the relation is proposed to easily apply PV system. To estimate the relation in case of separation of PV array producer and diagnosis system producer. Kalman Filter algorithm is also proposed at 30.2kW grid-connected PV system. Then, the performance of diagnosis method is evaluated using the hardware tests as well as the simulation.

Performance Analysis and Evaluation of 3kW Grid-Connected PV Systems (3kW급 계통연계형 태양광발전시스템의 성능특성 평가분석)

  • So, Jung-Hun;Jung, Young-Seok;Yu, Gwon-Jong;Choi, Ju-Yeop;Choy, Ick
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.509-516
    • /
    • 2004
  • The concerns of distributed generations including photovoltaic(PV) system have been increased around the world since PV system is becoming widespread as a clean and gentle energy source for earth. In the future high density grid-connected PV systems will be interconnected with distribution network. As a result, the stability and long-term reliability of PV systems have become more important issues in this area. Grid-connected PV systems have been installed and monitored at field demonstration test center(FDTC) and also data acquisition system(DAS) has been constructed for measuring and analyzing performance of PV system to observe the overall effect of environmental conditions on their operation characteristics. The performance of PV system has been evaluated and analyzed for component perspective (PV array and power conditioning system) and global perspective (system efficiency, capacity factor, and electrical power energy) by field test and loss factors of PV system.

Loss Analysis according to Configuration Method of AC Module Integrated Converter for Photovoltaic System (태양광 발전 시스템용 AC 모듈 집적형 전력변환기의 구성 방식에 따른 손실 분석)

  • Kang, Seung-Hyun;Son, Won-Jin;Ann, Sangjoon;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.311-318
    • /
    • 2020
  • A photovoltaic (PV) system uses an AC module integrated converter (MIC) to operate PV cells at a maximum power point (MPP) and for high efficiency. The MPP of a PV cell varies depending on partial shading conditions, and loss occurs differently according to the configuration method of the PV-MIC. Therefore, this study compares the losses of passive components and power semiconductors according to the partial shading conditions of the PV module. Theoretical loss analysis is performed using parameters for the datasheet and PSIM simulation results. Analysis results verify that the one-stage PV-MIC demonstrates high efficiency.

Detection of Aging Modules in Solar String with Jerk Function (Jerk 함수를 적용한 태양광 스트링 내의 노후화 모듈 검출 기법)

  • Son, Han-Byeol;Park, Seong-Mi;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.356-364
    • /
    • 2019
  • In this study, major problems, such as licensing problems due to civil complaints, deterioration of facility period, and damage of modules, are exposed to many problems in domestic businesses. Particularly, the photovoltaic (PV) modules applied to early PV systems have been repaired and replaced over the past two decades, and a new module-based aging detection method is needed to expand the maintenance market and stabilize and repair power supplies. PV modules in a PV system use a string that is configured in series to generate high voltage. However, even if only one module of the solar modules connected in series ages, the power generation efficiency of the aged string is reduced. Therefore, we propose a topology that can measure the instantaneous PV characteristic curve to determine the aging module in the solar string and the aging judgment algorithm using the measured PV characteristic curve.

Study on the Variation Characteristic of the Photo-Volatic Power Generation due to Regional Meteorological Elements (국지 기상 요소에 의한 태양광 발전량 변동특성에 관한 연구)

  • Lee, Soon-Hwan;Kim, Hae-Dong;Cho, Chang-Bum
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1943-1951
    • /
    • 2014
  • In order to clarify the characteristics of Photo-Volatic(PV) power generation over the Korean peninsula with complex terrain, special meteorological observation campaign was carried out for one year from 25 May 2011. Analysis is based on the comparison between observed meteorological elements and PV values generated at rated capacity 200 kW power plants. Solar radiation observed at $15^{\circ}$ inclined surface is 11 % larger than that observed at horizontal surface due to low elevation angel of the sun during winter season. The PV power generation tend to be more similar the variation of inclined surface irradiance than horizontal surface irradiance. Increasing air temperature often induce disturbance of the PV power generation. However, the higher the air temperature in winter season, the higher PV power generation because the PV module may be more activated at higher air temperature. PV generating efficiency tends to be conversed the value of 15%.

Flyback Inverter Using Voltage Sensorless MPPT for Photovoltaic AC Modules

  • Ryu, Dong-Kyun;Choi, Bong-Yeon;Lee, Soon-Ryung;Kim, Young-Ho;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1293-1302
    • /
    • 2014
  • A flyback inverter using voltage sensorless maximum power point tracking (MPPT) for photovoltaic (PV) AC modules is presented. PV AC modules for a power rating from 150 W to 300 W are generally required for their small size and low price because of the installation on the back side of PV modules. In the conventional MPPT technique for PV AC modules, sensors for detecting PV voltage and PV current are required to calculate the PV output power. However, system size and cost increase when the voltage sensor and current sensor are used because of the addition of the auxiliary circuit for the sensors. The proposed method uses only the current sensor to track the MPP point. Therefore, the proposed control method overcomes drawbacks of the conventional control method. Theoretical analysis, simulation, and experiment are performed to verify the proposed control method.

A Study on the Power Performance Measurement of Transparent Thin-film PV Windows of BIPV Depending on the Inclined Angle (건물일체형 투명 PV복층창의 설치조건에 따른 단위출력당 발전특성 분석연구)

  • An, Young-Sub;Song, Jong-Hwa;Kim, Seok-Ge;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.55-60
    • /
    • 2008
  • This study is on the analysis of power output of transparent thin-film PV windows which are integrated into the building envelope instead of traditional windows. 3 installation angles of vertical, horizontal and $30^{\circ}C$ inclination are investigated. To measure power output of PV windows, full scale mock-up house was designed and constructed. The power performance of PV window system was analyzed for horizontal angle, declination angle and vertical angle according to incline angle. Monitoring data are gathered from November 2006 to August 2007 and statistical analysis is performed to analysis a characteristics of power performance of transparent PV windows. Results show that annual power output of PV window with horizontal angle is 844.4kWh/kWp/year, declination angle 1,060kWh/kWp/year and vertical angle 431.6 kWh/kWp/year.

  • PDF

Analysis of Connected Operations of PV Source and Li Energy Storage Equipment to Power System (태양광 전원과 리튬 에너지 저장장치의 연계운전시 특성 해석)

  • Kim, Deok Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.106-112
    • /
    • 2014
  • This paper presents the analysis of connected operation of photo voltaic source and Li energy storage system. The micro-grid has been installed and operated for several years at the campus of USF and has been a role of test bed. Photo voltaic source has been strongly influenced by the location, weather and climate of a installed area and Li battery is connected directly to the photo voltaic source to compensate for the limitations. The Li battery is operated to supply power output to the grid by the charging or discharging mode based on the average power output of the PV source which is calculated from monitored data for several years. The load of the PV and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery are analyzed in detail. In connected operations of PV and Li battery to power system, the PV and Li battery is operated to supply constant power during only day time or peak time to increase load shedding ratio and efficient usage of generation sources in power system.