• Title/Summary/Keyword: PV module manufacturing

Search Result 37, Processing Time 0.028 seconds

Electrical Characteristics Analysis for single-crystalline and multi-crystalline PV module optical character. (단결정과 다결정 태양전지 모듈의 광학적 특성에 따른 전기적 출력 특성 분석)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyunggun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1100-1101
    • /
    • 2008
  • After lamination process, Isc is increased by sheet reflection. This paper presents the electrical output characteristics by back sheet reflection. The experiments was conducted by using single crystalline and multi crystalline PV module. The reflection area of single crystalline PV module is larger than multi one due to the difference of solar cell manufacturing. The experiments show that the increased performance ratio of single crystalline PV module output power is 1.55% rather than that of multi crystalline PV module output power is 1.13%. In addition, it is expected that the output power of single one rather than multi-one is increased by the lower temperature when the PV module is installed outside. The results can be reconsidered by the test material and test process. Back sheet used for humidity prevention makes PV module output power increasing.

  • PDF

A Study on Concentrating Photovoltaic Module with Plate Structure (평판 구조의 집광형 태양광 모듈 구조에 관한 연구)

  • Park, Seung-Jae;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-634
    • /
    • 2013
  • This study aims to investigate a new structure for a concentrating photovoltaic (PV) module using a III-V compound semiconductor solar cellto solve the problems of existing concentrating PV modules and to explore a concentrating optical system with a flat structure, which shows remarkable advantages in terms of manufacturing cost, installation, and maintenance. This study should greatly contribute toward the development of concentrating PV modules. This study was performed to achieve an improvement in efficiency and economy and to implement an actual product. A new source of renewable energy is the only way in which countries that cannot produce oil can even emerge as an energy power. Therefore, this work can serve as a fundamental study that will help South Korea grow into a country that is a PV power generation force.

An analysis of the deformation of PV module under different mechanical loads (기계 하중에 따른 PV모듈 변형 분석)

  • Choi, Ju-Ho;Jung, Tea-Hee;Song, Hee-Eun;Kim, Il-Soo;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.58-66
    • /
    • 2013
  • Recently, PV module that the most important part of the photovoltaic system is more widened to lower manufacturing costs for module. However, the broad PV module results to the serious mechanical damage corning from installation circumstances such as snow, wind etc of snow and finally lead to the dramatic degradation of the electrical behavior of PV module. In this paper, 3 kinds of PV modules that consist of the different thickness and area of front glass and the diverse cross sectional structures of the frame are prepared for this experiment. The drooped length and electrical outputs of the PV modules are measured by means of applying 600Pa mechanical load to the PV modules from 1200Pa to 5400Pa base on the mechanical load test procedure of K SC IEG 61215 standard. The simulation data are obtained by the simulation tool as ANSYS and those are validate by comparing with the those experimental results figure out relations between the deformation and the constituent part of PV module.

Soldering Process of PV Module manufacturing and Reliability (태양전지 모듈의 솔더링 공정에 대한 신뢰성)

  • Kim, S.J.;Choi, J.Y.;Kong, J.H.;Moon, J.H.;Lee, S.H.;Shim, W.H.;Lee, E.H.;Lee, E.J.;Lee, H.S.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.303-306
    • /
    • 2011
  • Although PV module manufacturing and its structure are simple, the semi-permanent products can be used out doors for more than twenty years. Therefore it is need to choose proper materials and optimize manufacturing process. This paper suggest that factors of degradation need to be studied to achieve a more understanding of PV module Degradation rates and material failure. Nowadays durability of the PV Module is very important to sustain output safety for obtaining reliability. This paper is about the experiment that soldering uniformity of soldering process and to make least void from soldering process. From This study soldering flux residue and soldering method is main factor to form void blocked soldering uniformity and by using this.

  • PDF

Analysis of Optical Characteristics of Transparent Glasses for PV and Glass-Glass Module Application (PV용 투명유리와 G/G모듈의 광학적 특성 평가 및 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, we analyze the electrical optical characteristics of transparent glass for photovoltaic and glass-glass module application. The elemental facts from raw glass to laminated glass with solar cells are analyzed using UV spectrophotometer and spectroradiometer. From the data of transmittance and reflectance, the optimum PV module processing condition and selection of material for fabrication should be considered deeply for obtaining high module efficiency. Also we introduce two glasses which has 2%$\sim$4% higher transmittance using coating technology with anti-reflection material. From this experiment, we try to give some basic information for PV module manufacturing industry. The detail description is specified as the following paper.

The Analysis of Optical Characteristics of Glasses for PV Module Application (태양전지모듈적용 투명유리의 광특성 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.98-103
    • /
    • 2008
  • The glass for crystalline PV module fabrication should have high thermal and mechanical resistance to environmental also have high transparency. In this paper, we analyze the optical characteristics of glasses for photovoltaic module application. The transmittance of several glasses are measured. The effects of texturing on low iron glass, glass thickness, anti-reflective glass, photocatalyst-treated glass and special glass are compared each other. Then this will give some information to select PV glass for manufacturing. The detailed analysis is described in the following paper.

  • PDF

The Characteristic of Crystalline Si Solar Cell by Heat Shocking (Heat Shocking에 의한 결정질 실리콘 Solar Cell의 출력특성)

  • Shin, Jun-Oh;Jung, Tae-Hee;Kim, Tae-Bum;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.246-250
    • /
    • 2009
  • String & tabbing step in the crystalline PV module manufacturing process for the temperature directly affects solar cells. In fact, in the manufacture of PV modules tend to be temperature factor and the corresponding changes n the output shows the same characteristics. In this journal, it will be considered about thermal characteristics, especially changes of characteristic in high temperature of the solar cell through experiment that we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. And we can think about the possibility of efficiency improvements over looks in PV module manufacturing processes.

  • PDF

The Optical Analysis of Transparent Glasses for PV Module Application (PV모듈 제조용 투명유리의 광학적 특성평가 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.179-180
    • /
    • 2008
  • In this paper, we studied the optical property of transparent glasses for photovoltaic module manufacturing. The glass should have high mechanical and chemical resistance from outside environmental. Also optical transparency is a key requirement for better electrical performance. In here, we examine several kinds of transparent glasses and special purpose ones. This would give some real information for understanding PV module. The further analysis is described in the following paper.

  • PDF

HIT PV Module Performance Research for an Improvement of Long-term Reliability: A Review

  • Park, Hyeong Sik;Jeong, Jae-Seong;Park, Chang Kyun;Lim, Kyung Jin;Shin, Won Seok;Kim, Yong Jun;Kang, Jun Young;Kim, Young Kuk;Park, No Chang;Nam, Sang-Hun;Boo, Jin-Hyo;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.2
    • /
    • pp.47-54
    • /
    • 2017
  • We report finding ways to improve the long-term reliability of PV module including the heterostructure with the intrinsic thin layer (HIT) solar cell. We point out the stability of the products of Panasonic HIT cell. We account for a brief description of the module manufacturing process to investigate the issues of each process and analyze the causes. We carried out the silicon PV module of the glass to glass type under the damp heat test around 1000 hours. However, it degraded around 7% of PV module power after 300 hours exposure in comparison with the initial status (Initial: 12.7 Watt). We investigated possible cause and solutions for the module performance to develop the long-term reliability.