• 제목/요약/키워드: PV model

검색결과 274건 처리시간 0.024초

연료전지와 열병합 발전을 고려한 마이크로그리드의 최적 운용 (Optimal Microgrid Operation Considering Fuel Cell and Combined Heat and Power Generation)

  • 이지혜;이병하
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.596-603
    • /
    • 2013
  • The increase of distributed power generation is closely related to interest in microgird including renuable energy sources such as photovoltaic (PV) systems and fuel cell. By the growing interest of microgrid all over the world, many studies on microgrid operation are being carried out. Especially operation technique which is core technology of microgrid is to supply heat and electricity energy simultaneously. Optimal microgrid scheduling can be established by considering CHP (Combined Heat and Power) generation because it produce both heat and electricity energy and its total efficiency is high. For this reason, CHP generation in microgrid is being spotlighted. In the near future, wide application of microgrid is also anticipated. This paper proposes a mathematical model for optimal operation of microgrid considering both heat and power. To validate the proposed model, the case study is performed and its results are analyzed.

PV-SPE 시스템 최적 운전 기법에 관한 연구 (EMDTC model Development of Solar-Powered Hydrogen Production system)

  • 이동한;김종현;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.274-276
    • /
    • 2005
  • This paper present an effective modeling scheme of SPE cell system for hydrogen production. As oxygen and hydrogen produced by water electrolysis using SPE are high purity, we can use oxygen in biomedical and hydrogen could be used in many ways. Recently, it is under the eye as a surplus power storage system. PSCAD/EMTDC model of SPE cell system for hydrogen production to efficiently utilize solar cell energy is showed in this paper. The simulated results are then verified by comparing them with the actual values obtained from the data acquisition system. Authors are sure that it is a useful method to the researchers who study SPE cell system for hydrogen production.

  • PDF

태양광발전 단기예측모델 개발 (The Development of the Short-Term Predict Model for Solar Power Generation)

  • 김광득
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.62-69
    • /
    • 2013
  • In this paper, Korea Institute of Energy Research, building integrated renewable energy monitoring system that utilizes solar power generation forecast data forecast model is proposed. Renewable energy integration of real-time monitoring system based on monitoring data were building a database and the database of the weather conditions and to study the correlation structure was tailoring. The weather forecast cloud cover data, generation data, and solar radiation data, a data mining and time series analysis using the method developed models to forecast solar power. The development of solar power in order to forecast model of weather forecast data it is important to secure. To this end, in three hours, including a three-day forecast today Meteorological data were used from the KMA(korea Meteorological Administration) site offers. In order to verify the accuracy of the predicted solar circle for each prediction and the actual environment can be applied to generation and were analyzed.

Removal of reactive black 5 dye by using polyoxometalate-membrane

  • Topaloglu, Ali Kemal;Yildirim, Yilmaz
    • Membrane and Water Treatment
    • /
    • 제12권1호
    • /
    • pp.23-35
    • /
    • 2021
  • A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.

태양광시스템 모델식과 기계학습을 이용한 발전성능 추정 (Estimation of Power Using PV System Model Formula and Machine Learning)

  • 오현규;신우균;주영철;배수현;황혜미;강기환;고석환;장효식
    • Current Photovoltaic Research
    • /
    • 제11권1호
    • /
    • pp.27-33
    • /
    • 2023
  • In this paper, a machine learning model by using a regression algorithm is proposed to estimate the power generation performance of the BIPV system. The physical model formula for estimating the generation performance and the proposed model were compared and analyzed. For the physical model formula, simple efficiency model, temperature correction model, and regressive physics model for changing an irradiance were used. As a result, when comparing the regressive physics model for changing an irradiance and the proposed model with the actual generation measured data, the respective RMSE values are 0.1497 kW, 0.0451 kW and the accuracy values are 86.44%, and 96.56%. Therefore, the proposed model implemented in this experiment can be useful in estimating power generation.

가상구현 태양전지 시스템을 위한 태양전지의 새로운 모델링 (Analysis of New Solar Cell Model for the Virtual Implemented Solar Cell System)

  • 정병환;강병희;이명언;최규하
    • 전력전자학회논문지
    • /
    • 제11권1호
    • /
    • pp.79-89
    • /
    • 2006
  • 태양광발전시스템이 갖고 있는 전기적 출력특성이 일사량과 온도의 변화에 따라 크게 변화되므로 동일조건에서의 재현 또는 재실험이 불가능한 단점으로 실험적 분석에 대한 어려운 문제점을 갖고 있다. 태양광발전시스템의 실증적인 연구를 위하여 기후조건의 변화에도 실제 태양전지의 출력특성을 나타낼 수 있는 가상구현 시스템이 필요한데 이를 구현하기위한 기존의 이론적 모델은 온도와 일사량이 동시에 변화할 때 나타내지 못하는 약점이 있어 이론 보완하는 모델 연구가 우선적으로 필요하다. 따라서 본 논문에서는 태양전지 특성을 가상구현 할 수 있는 새로운 수학적 모델을 제안하였고 연구자가 원하는 특정조건이나 임의의 일사량과 온도에 대한 태양전지 특성을 가상구현 할 수 있음을 이론적 검토 및 시뮬레이션을 통하여 해석하였다. 또한 새로운 모델을 검증하기 위하여 태양전지 제조사의 데이터를 바탕으로 가상구현 태양전지 시스템을 실험해 비교해본 결과 최대전력점과 개방전압사이에서 5[%] 미만의 오차를 보여 태양전지 가상구현 시스템에 적용 타당성을 보였다.

The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate change

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1658-1663
    • /
    • 2021
  • Research on climate change and global warming on the power generation systems are rapidly increasing because of the Importance of the sustainable energy supply, thus the electricity supply since its growing share, in the end, uses energy supply. However, some researchers conducted this field, but many research gaps are not mentioned and filled in this field's literature since the lack of general statements and the quantitative models and formulation of the issue. In this research, an exergy-based model is implemented to model a set of six power generation technologies (combined cycle, gas turbine, nuclear plant, solar PV, and wind turbine) and use this model to simulate each technology's responses to climate change impacts. Finally, using these responses to define and calculate a formulation for the relationship between the system's energy performance in different environmental situations and a dimensionless index to quantize each power technology's reliability against the climate change impacts called the Pahlev reliability index (P-index) of the power technology. The results have shown that solar and nuclear technologies are the most, and wind turbines are the least reliable power generation technologies.

수도권에서 유출류 경계(Outflow Boundary)를 따라 발생한 집중호우 분석 (Analysis of An Outflow Boundary Induced Heavy Rainfall That Occurred in the Seoul Metropolitan Area)

  • 이지원;민기홍
    • 대기
    • /
    • 제27권4호
    • /
    • pp.455-466
    • /
    • 2017
  • In Korea, property and human damages occur annually due to heavy precipitation during the summer. On August 8, 2015, heavy rainfall occurred in the Seoul metropolitan area due to an outflow boundary, and $77mmhr^{-1}$ rainfall was recorded in Gwangju, Gyeonggi Province. In this study, the simulation of the WRF numerical model is performed to understand the cause and characteristics of heavy rainfall using the Conditional Instability of the Second Kind (CISK), potential vorticity (PV), frontogenesis function, and convective available potential energy (CAPE) analyses, etc. Convective cells initiated over the Shandong Peninsula and located on the downwind side of an upper level trough. Large amounts of water vapor were supplied to the Shandong Peninsula along the southwestern edge of a high pressure system, and from the remnants of typhoon Soudelor. The mesoscale convective system (MCS) developed through CISK process and moved over to the Yellow Sea. The outflow boundary from the MCS progressed east and pushed cold pool eastward. The warm and humid air over the Korean Peninsula further enhanced convective development. As a result, a new MCS developed rapidly over land. Because of the latent heat release due to convection and precipitation, strong potential vorticity was generated in the lower atmosphere. The rapid development of MCS and the heavy rainfall occurred in an area where the CAPE value was greater than $1300Jkg^{-1}$ and the fronto-genesis function value of 1.5 or greater coincided. The analysis result shows that the MCS driven by an outflow boundary can be identified using CISK process.

비정형 건물일체형 태양광 발전 시스템 규칙기반 BIM설계 지원 도구 개발 (Development of a Rule-based BIM Tool Supporting Free-form Building Integrated Photovoltaic Design)

  • 홍성문;김대성;김민철;김주형
    • 한국BIM학회 논문집
    • /
    • 제5권4호
    • /
    • pp.53-62
    • /
    • 2015
  • Korea has been at the forefront of green growth initiatives. In 2008, the government declared the new vision toward 'low-carbon society and green growth'. The government subsidies and Feed-in Tariff (FIT) increased domestic usage of solar power by supplying photovoltaic housing and photovoltaic generation systems. Since 2000, solar power industry has been the world's fastest growing source with the annual growth rate of 52.5%. Especially, BIPV(Building Integrated Photovoltaic) systems are capturing a growing portion of the renewable energy market due to several reasons. BIPV consists of photovoltaic cells and modules integrated into the building envelope such as a roof or facades. By avoiding the cost of conventional materials, the incremental cost of photovoltaics is reduced and its life-cycle cost is improved. When it comes to atypical building, numerous problems occur because PV modules are flat, stationary, and have its orientation determined by building surface. However, previous studies mainly focused on improving installations of solar PV technologies on ground and rooftop photovoltaic array and developing prediction model to estimate the amount of produced electricity. Consequently, this paper discusses the problem during a planning and design stage of BIPV systems and suggests the method to select optimal design of the systems by applying the national strategy and economic policies. Furthermore, the paper aims to develop BIM tool based on the engineering knowledge from experts in order for non-specialists to design photovoltaic generation systems easily.

Dental age estimation in Indonesian adults: An investigation of the maxillary canine pulp-to-tooth volume ratio using cone-beam computed tomography

  • Khamila Gayatri Anjani;Rizky Merdietio Boedi;Belly Sam;Fahmi Oscandar
    • Imaging Science in Dentistry
    • /
    • 제53권3호
    • /
    • pp.221-227
    • /
    • 2023
  • Purpose: This study was performed to develop a linear regression model using the pulp-to-tooth volume ratio (PTVR) ratio of the maxillary canine, assessed through cone-beam computed tomography (CBCT) images, to predict chronological age (CA) in Indonesian adults. Materials and Methods: A sample of 99 maxillary canines was collected from patients between 20 and 49.99 years old. These samples were obtained from CBCT scans taken at the Universitas Padjadjaran Dental Hospital in Indonesia between 2018 and 2022. Pulp volume (PV) and tooth volume (TV) were measured using ITK-SNAP, while PTVR was calculated from the PV/TV ratio. Using RStudio, a linear regression was performed to predict CA using PTVR. Additionally, correlation and observer agreement were assessed. Results: The PTVR method demonstrated excellent reproducibility, and a significant correlation was found between the PTVR of the maxillary canine and CA(r= -0.74, P<0.01). The linear regression analysis showed an R2 of 0.58, a root mean square error of 5.85, and a mean absolute error of 4.31. Conclusion: Linear regression using the PTVR can be effectively applied to predict CA in Indonesian adults between 20 and 49.99 years of age. As models of this type can be population-specific, recalibration for each population is encouraged. Additionally, future research should explore the use of other teeth, such as molars.