• 제목/요약/키워드: PV model

검색결과 274건 처리시간 0.028초

일사량 직산분리 모델에 따른 표준기상연도 데이터와 태양광 발전 예측량의 불확실성 (Variation of Solar Photovoltaic Power Estimation due to Solar Irradiance Decomposition Models)

  • 조을효;이현진
    • 한국태양에너지학회 논문집
    • /
    • 제39권3호
    • /
    • pp.81-89
    • /
    • 2019
  • Long-term solar irradiance data are required for reliable performance evaluation and feasibility analysis of solar photovoltaic systems. However, measurement data of the global horizontal irradiance (GHI) are only available for major cities in Korea. Neither the direct normal irradiance (DNI) nor the diffuse horizontal irradiance (DHI) are available, which are also needed to calculate the irradiance on the tilted surface of PV array. It is a simple approach to take advantage of the decomposition model that extracts DNI and DHI from GHI. In this study, we investigate variations of solar PV power estimation due to the choice of decomposition model. The GHI data from Korea Meteorological Administration (KMA) were used and different sets of typical meteorological year (TMY) data using some well-known decomposition models were generated. Then, power outputs with the different TMY data were calculated, and a variation of 3.7% was estimated due to the choice of decomposition model.

View Factor를 고려한 마이크로그리드 적용용 고효율 P-Type Si 양면형 태양광 모듈의 출력량 예측 (Power Prediction of P-Type Si Bifacial PV Module Using View Factor for the Application to Microgrid Network)

  • 최진호;김광순;차혜림;김규광;방병관;박소영;안형근
    • 한국전기전자재료학회논문지
    • /
    • 제31권3호
    • /
    • pp.182-187
    • /
    • 2018
  • In this study, 20.8% of a p-type Si bifacial solar cell was used to develop a photovoltaic (PV) module to obtain the maximum power under a limited installation area. The transparent back sheet material was replaced during fabrication with a white one, which is opaque in commercial products. This is very beneficial for the generation of more electricity, owing to the additional power generation via absorption of light from the rear side. A new model is suggested herein to predict the power of the bifacial PV module by considering the backside reflections from the roof and/or environment. This model considers not only the frontside reflection, but also the nonuniformity of the backside light sources. Theoretical predictions were compared to experimental data to prove the validity of this model, the error range for which ranged from 0.32% to 8.49%. Especially, under $700W/m^2$, the error rate was as low as 2.25%. This work could provide theoretical and experimental bases for application to a distributed and microgrid network.

태양광전원 수용을 위한 MVDC 배전망의 경제성평가 모델링에 관한 연구 (A Study on Economic Evaluation Modeling of MVDC Distribution System for Hosting Capacity of PV System)

  • 이후동;김기영;김미성;노대석
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.1-12
    • /
    • 2021
  • MVDC 배전기술은 현재 급격하게 도입되고 있는 태양광전원의 접속지연 문제를 해결하기 위한 효과적인 대안으로 평가되고 있지만, DC 배전망용 기기들을 개발해야 하므로 DC 배전망의 구축비용은 경제적인 측면에서의 문제점을 가지고 있다. 따라서, 본 논문에서는 태양광전원의 수용을 위한 MVDC 배전망의 도입 타당성을 평가하기 위하여, 태양광전원 단지를 용량에 따라 규모별로 정의하고, 이를 수용하기 위한 배전망을 건설하는 경우에 대하여 규모별로 수용성 모델을 제시한다. 이 모델은 배전망의 전원공급방식에 따라 AC 및 DC 배전망으로 구분되며, 수용할 태양광전원 단지의 용량에 따라 수백 MW급은 대규모, 수십 MW급은 중규모, 수 MW급은 소규모로 정의된다. 또한, 본 논문에서는 AC 및 DC 배전망의 건설비, 전력변환설비의 교체비, 운용비로 구성된 비용요소와 태양광전원의 발전수익에 따른 전력량 요금 및 REC 요금으로 구성된 편익요소를 고려하여 MVDC 배전망의 경제성평가 모델링을 제시한다. 이를 바탕으로 현재가치 환산법과 원금균등상환 방식을 이용하여 MVDC 배전망의 경제성을 평가한 결과, 태양광전원의 수용 규모에 따라 일정 연계거리 이후에서는 DC 배전망의 구축비용이 기존의 AC 배전망보다 경제적임을 알 수 있어, 본 논문에서 제시한 경제성평가 모델링의 유용성을 확인하였다.

다기능 복합 솔라윈도우 시스템의 에너지성능평가 (The Energy Performance Evaluation of Multi-purpose Solar Window System)

  • 조일식;김병수
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.10-15
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window System built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in energy performance analysis. The reference model of simulation was made up to analysis energy performance on Solar Window system. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

다기능 솔라윈도우의 열성능 연구 (The Study of Thermal Performance on Solar Window)

  • 조일식;김장회;양윤섭;김병수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in Heating/cooling performance analysis. The reference model of simulation was made up to analysis Heating/cooling performance on Solar Window. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

  • PDF

Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells

  • Uysal, Mine U.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.849-862
    • /
    • 2016
  • This paper investigates the static buckling behaviours of Functionally Gradient Polymeric Material (FGPM) shells in the form of hemispherical segment. A new FGPM model based on experimental was considered to investigate the buckling problem of thin-walled spherical shells loaded by the external pressure. The spherical shells were formed by FGPM which was produced adding the two types of graphite powders into epoxy resin. The graphite powders were added to the epoxy resin as volume of 3, 6, 9, and 12%. Halpin-Tsai and Paul models were used to determine the elastic moduli of the parts of FGPM. The detailed static buckling analyses were performed by using finite element method. The influences of the types and volume of graphite powders on the buckling behaviour of the FGPM structures were investigated. The buckling loads of hemispherical FGPM shells based on Halpin-Tsai and Paul models were compared with those determined from the analytical solution of non-graphite condition existing for homogeneous material model. The comparisons between these material models showed that Paul model was overestimated. Besides, the critical buckling loads were predicted. The higher critical buckling loads were estimated for the PV60/65 graphite powder due to the compatible of the PV60/65 graphite powder with resin.

Development of a Model to Predict the Primary Infection Date of Bacterial Spot (Xanthomonas campestris pv. vesicatoria) on Hot Pepper

  • Kim, Ji-Hoon;Kang, Wee-Soo;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • 제30권2호
    • /
    • pp.125-135
    • /
    • 2014
  • A population model of bacterial spot caused by Xanthomonas campestris pv. vesicatoria on hot pepper was developed to predict the primary disease infection date. The model estimated the pathogen population on the surface and within the leaf of the host based on the wetness period and temperature. For successful infection, at least 5,000 cells/ml of the bacterial population were required. Also, wind and rain were necessary according to regression analyses of the monitored data. Bacterial spot on the model is initiated when the pathogen population exceeds $10^{15}cells/g$ within the leaf. The developed model was validated using 94 assessed samples from 2000 to 2007 obtained from monitored fields. Based on the validation study, the predicted initial infection dates varied based on the year rather than the location. Differences in initial infection dates between the model predictions and the monitored data in the field were minimal. For example, predicted infection dates for 7 locations were within the same month as the actual infection dates, 11 locations were within 1 month of the actual infection, and only 3 locations were more than 2 months apart from the actual infection. The predicted infection dates were mapped from 2009 to 2012; 2011 was the most severe year. Although the model was not sensitive enough to predict disease severity of less than 0.1% in the field, our model predicted bacterial spot severity of 1% or more. Therefore, this model can be applied in the field to determine when bacterial spot control is required.

Optimization of photovoltaic thermal (PV/T) hybrid collectors by genetic algorithm in Iran's residential areas

  • Ehyaei, M.A.;Farshin, Behzad
    • Advances in Energy Research
    • /
    • 제5권1호
    • /
    • pp.31-55
    • /
    • 2017
  • In the present study, PV/T collector was modeled via analysis of governing equations and physics of the problem. Specifications of solar radiation were computed based on geographical characteristics of the location and the corresponding time. Temperature of the collector plate was calculated as a function of time using the energy equations and temperature behavior of the photovoltaic cell was incorporated in the model with the aid of curve fitting. Subsequently, operational range for reaching to maximal efficiency was studied using Genetic Algorithm (GA) technique. Optimization was performed by defining an objective function based on equivalent value of electrical and thermal energies. Optimal values for equipment components were determined. The optimal value of water flow rate was approximately 1 gallon per minute (gpm). The collector angle was around 50 degrees, respectively. By selecting the optimal values of parameters, efficiency of photovoltaic collector was improved about 17% at initial moments of collector operation. Efficiency increase was around 5% at steady condition. It was demonstrated that utilization of photovoltaic collector can improve efficiency of solar energy-based systems.

표면온도 알고리즘을 통한 옥상녹화통합형 태양광시스템의 출력 모니터링 연구 (A Study on Output Monitoring of Green Roof Integrated PV System through Surface Temperature Algorithm)

  • 김태한;박상연
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.89-95
    • /
    • 2015
  • The centralized power supply system and rainwater treatment system, which are major infrastructure in modern cities, are showing their limitations in accommodating environment load due to climate changes that has aggravated recently. As a result, complex issues such as shortage of reserve power and urban flooding have emerged. As a single solution, decentralized systems such as a model integrating photovoltaic system and rooftop greening system are suggested. When these two systems are integrated and applied together, the synergy effect is expected as the rooftop greening has an effect of preventing urban flooding by controlling peak outflow and also reduces ambient temperature and thus the surface temperature of solar cells is lowered and power generation efficiency is improved. This study aims to compare and analyze the monitoring results of four algorithms that define correlations between micro-climate variables around rooftop greening and the surface temperature of solar cells and generate their significance. By doing so, this study seeks to present an effective algorithm that can estimate the surface temperature of solar cell that has direct impact on the efficiency of photovoltaic power generation by observing climate variables.

자가 발전 시스템을 갖춘 고전압 전기장 수질개선 장치 개발 (Water Quality Improvement System Using High Voltage Electric Field with Self-Generation System)

  • 강래윤;강철웅
    • 동력기계공학회지
    • /
    • 제19권2호
    • /
    • pp.84-89
    • /
    • 2015
  • The occurrence of algae caused by eutrophication of fresh water is a pollution source to destroy the aquatic environment. When the high voltage electric field is applied in the water, When a high voltage is applied to the electric field in the water, the algae can be broken the balance of cell membranes, and is dead. In this paper, we develop a water quality improvement system for generating an electric field having a higher energy than the zeta potential when a high voltage is applied to 4,000V. To ensure the mobility of the water quality improvement system, we designed the PV generation system using the optimal size technique that is based on the model of power lack ratio. By evaluating the output characteristics of the water quality improvement system, power generation characteristics of the PV generation system, and battery charging characteristics, we can show that the proposed system can be applicable to the water quality improvement system inhibiting the growth rate of the algae in the fresh water.