• Title/Summary/Keyword: PV array

Search Result 236, Processing Time 0.029 seconds

Optimum Connection Structure for PV Panel Considering Shadow Influence (그림자 영향을 고려한 태양광 패널의 최적 접속 구조)

  • Jeong, Woo-Yong;Kim, Yong-Jung;Kim, Hyosung
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.210-212
    • /
    • 2019
  • 태양광발전에서 PV panel의 출력 전압 및 전류는 제한적이기 때문에, 필요로 하는 전원 조건을 충족시키기 위하여 PV panel을 직병렬로 연결하여 PV array를 구성한다. 이때, PV array에 부분적인 그림자가 발생할 경우 최대발전전력은 PV array의 접속 구조와 블록킹 다이오드 유무에 따라 달라진다. 본 논문에서는 PV panel의 직병렬 접속에 따른 PV array의 6가지의 접속 구조와 블록킹 다이오드 유무를 고려하여, 부분적인 그림자가 발생할 경우 발전전력을 극대화할 수 있는 최적의 접속 구조를 제시하고 시뮬레이션과 실험을 통해 검증하였다.

  • PDF

Impedance Analysis and Suree Characteristics of PV Array with PSCAD/EMTDC (PSCAD/EMTDC를 이용한 태양광발전용 태양전지 어레이의 서지특성분석)

  • Lee, Ki-Ok;Choi, Ju-Yeop;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.255-258
    • /
    • 2003
  • Photovoltaic(PV) array, which is generally installed outside, has the possibility to be damaged by high voltage due to lightning. Because the electrical characteristics of PV array have not been fully identified by lightning yet, there is a very important issue whether PV array should be connected with ground or not. In this paper, a basic model of PV array is provided considering the PV cell's barrier capacitance and ground capacitance for analysis of electrical characteristics by lightning using PSCAD/EMTDC.

  • PDF

Impedance and Surge Characteristics Analysis of PV Array (태양전지 어레이의 임피던스를 이용한 서지특성분석)

  • Lee, Ki-Ok;Choi, Ju-Yeop;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.208-211
    • /
    • 2004
  • Photovoltaic(PV) array, which is generally installed outside, has the possibility to be damaged by high voltage due to lightning. Because the electrical characteristics of PV array have not been fully identified by lightning yet, there is a very important issue whether PV array should be connected with ground or not. In this paper, a basic model of PV array is provided considering the PV cell's barrier capacitance and ground capacitance for analysis of electrical characteristics by lightning using PSCAD/EMTDC.

  • PDF

A Study on the characteristic of array arrangement for the optimum design of the balcony PV system (발코니형 PV시스템의 최적설계를 위한 어레이 배열 특성 고찰)

  • Kang, Gi-Hwan;So, Jung-Hun;Kim, Hyun-Il;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1678-1680
    • /
    • 2005
  • This paper presents Building Integrated Photovoltaic system of the balcony type which is influenced by conditions such as irradiation, module temperature, shade and array arrangement. When architecture component, trees and cloud shade connecting array in series, total PV array current is reduced. So, before PV system design, a planner have to simulate many situations. And then array should be composed suitable for parallel and series modules. By the results, it is very important to develop optimal design of array considering shade effect for the balcony PV system.

  • PDF

Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System (평지붕 설치 태양광시스템의 표면형태 조사·분석)

  • Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

Control of a Novel PV Tracking System Considering the Shadow Influence

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.524-529
    • /
    • 2012
  • This paper proposes a novel control strategy of a PV tracking system considering the shadow influence. If distance of between PV arrays is not enough, shadow can be occurred to PV module. In PV system, if shadow is occurred to PV modules then PV modules operates reverses bias, and will eventually cause hot-spot and loss. To reduce loss by shadow influence, this paper proposes shadow compensation algorithm using distance between arrays and shadow length of array. The distance between arrays is calculated by using azimuth of solar, and length of array shadow is calculated using by altitude of solar. The shadow compensation algorithm proposed in this paper compares distance between arrays and length of array shadow. When the shadow length is longer than the distance between arrays, the algorithm adjusts altitude of array to avoid the shadow effects. The control algorithm proposed in this paper proves validity through compared with conventional algorithm and proposes experiment result.

Method for PV Module Mismatch Compensation to Reduce Parallel Mismatch in Solar PV Array (태양광 PV 어레이에서 병렬 부정합을 저감시키는 모듈 부정합 보상기법)

  • Park, Gi-Yob;Ahn, Hee-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.170-171
    • /
    • 2010
  • The power loss due to PV module mismatch in PV array system is analyzed and a mismatch compensation method is proposed. A dc-dc converter is used to compensate for series mismatch caused by a low current module in a string. The converter is controlled to maximize the array power output. The proposed compensation method was verified by PSpice simulation.

  • PDF

A Study on PV System Output Changes by PV Array Installation Position and Mount Angle Change (태양광 어레이 설치 위치 및 각도변경 전후의 태양광 발전 시스템의 출력 변화에 관한 연구)

  • Yoon, Jeong-Phil;Cha, In-Su;Choi, Jeong-Sik;Kim, Dong-Mook;Park, Jong Bock;Ha, Min Ho;Kim, Won Bae
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.189-194
    • /
    • 2014
  • In this paper, We have simulated the output variation of the PV arrays installation with position & angle change. The existing 3 solar array system are $43^{\circ}$ southeast and each of the mounting angle is $17^{\circ}$. The PV output power is 240 kW. The composite studied systems in this paper arrays altered 2 PV array among 3 PV array system- the output 144kW. We simulated this system using Solar Pro ver.4.1. The simulation conditions are southwest $43^{\circ}/array$, mount angle $27^{\circ}/array$. Because the southeast have shadow effect-higher mountain The purpose of southwest $43^{\circ}$ is reduce the shadow effect. The simulation results of the suggestion design algorithm compared to 1,590 kWh/year output is increased with the southeast.

Fast Partial Shading Analysis of Large-scale Photovoltaic Arrays via Tearing Method

  • Zhang, Mao;Zhong, Sunan;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1489-1500
    • /
    • 2018
  • Partial shading analysis of large-scale photovoltaic (PV) arrays has recently become a theoretically and numerically challenging issue, and it is necessary for PV system designers. The main contributions of this study are the following: 1) A PSIM-based macro-model was employed because it is remarkably fast, has high precision, and has no convergence issues. 2) Three types of equivalent macro-models were developed for the transformation of a small PV sub-array with uniform irradiance to a new macro-model. 3) On the basis of the proposed new macro-model, a tearing method was established, which can divide a large-scale PV array into several small sub-arrays to significantly improve the efficiency improvement of a simulation. 4) Three platforms, namely, PSIM, PSpice, and MATLAB, were applied to evaluate the proposed tearing method. The proposed models and methods were validated, and the value of this research was highlighted using an actual large-scale PV array with 2420 PV modules. Numerical simulation demonstrated that the tearing method can remarkably improve the simulation efficiency by approximately thousands of times, and the method obtained a precision of nearly 6.5%. It can provide a useful tool to design the optimal configuration of a PV array with a given shading pattern as much as possible.

Impedance Analysis and Surge Characteristics of PV Array (태양전지 어레이의 임피던스 분석과 서지 특성 고찰)

  • Lee, Ki-Ok;So, Jeong-Hoon;Jung, Myung-Woong;Yu, Gwon-Jong;Choi, Ju-Yeop;Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1347-1349
    • /
    • 2003
  • PV array, which is generally installed in the outside, has the possibility to be damaged by high voltage doc to lightning. Because the surge characteristic of PV array has not been fully identified yet, there is the very important issue whether PV array should be connected with ground or not. In this paper, a basic model of PV array is provided considering solar cell's barrier capacitance and ground capacitance for analysis of surge characteristics.

  • PDF