• 제목/요약/키워드: PV Output Simulation

검색결과 140건 처리시간 0.024초

A Hysteresis Current Controller for PV-Wind Hybrid Source Fed STATCOM System Using Cascaded Multilevel Inverters

  • Palanisamy, R.;Vijayakumar, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.270-279
    • /
    • 2018
  • This paper elucidates a hysteresis current controller for enhancing the performance of static synchronous compensator (STATCOM) using cascaded H-bridge multilevel inverter. Due to the rising power demand and growing conventional generation costs a new alternative in renewable energy source is gaining popularity and recognition. A five level single phase cascaded multilevel inverter with two separated dc sources, which is energized by photovoltaic - wind hybrid energy source. The voltages across the each dc source is balanced and standardized by the proposed hysteresis current controller. The performance of STATCOM is analyzed by connecting with grid connected system, under the steady state & dynamic state. To reduce the Total Harmonic Distortion (THD) and to improve the output voltage, closed loop hysteresis current control is achieved using PLL and PI controller. The performance of the proposed system is scrutinized through various simulation results using matlab/simulink and hardware results are also verified with simulation results.

A Novel Flyback-type Utility Interactive Inverter for AC Module Systems

  • Shimizu Toshihisa;Nakamura Naoki;Wada Keiji
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.518-522
    • /
    • 2001
  • In recent years, natural energy has attracted growing interest because of environmental concerns. Many studies have been focused on photovoltaic power generation systems because of the ease of use in urban areas. On the conventional system, many photovoltaic modules (PV modules) are connected in series in order to obtain the sufficient DC-bus voltage for generating AC output voltage at the inverter circuit. However, the total generation power on the PV modules sometimes decreases remarkably because of the shadows that partially cover the PV modules. In order to overcome this drawback, an AC module strategy is proposed. On this system, a small power DC-AC utility interactive inverter is mounted on each PV module individually and the inverter operates so as to generate the maximum power from the corresponding PV module. This paper presents a novel flyback-type utility interactive inverter circuit suitable for AC module systems. The feature of the proposed system are, (1) small in volume and light in weight, (2) stable AC current injection, (3) enabling a small DC capacitor. The effectiveness of the proposed system is clarified through the simulation and the experiments.

  • PDF

PSCAD/EMTDC를 이용한 태양광발전(PV) 모델링에 관한 연구 (The PV System Modeling Based on the PSCAD/EMTDC)

  • 전진택;노대석;김찬혁;왕용필
    • 한국융합학회논문지
    • /
    • 제2권3호
    • /
    • pp.15-23
    • /
    • 2011
  • 본 논문에서는 태양광발전의 3상 인버터의 동작특성을 해석하기 위하여, d-q좌표변환을 통하여 상태방정식을 유도하고, 출력제어를 위한 PI제어기를 갖은 전류제어 알고리즘과 인버터 설계에 대한 Sinusoidal PWM방식의 이론적 알고리즘 제시하였다. 이를 바탕으로 배전계통의 상용소프트웨어인 PSCAD/EMTDC를 이용하여 태양광발전의 모델링을 수행하였다. 그리고 시뮬레이션 결과와 이론적인 수치해석과의 비교, 분석을 통하여 본 연구에서 제시한 모델링의 유효성을 확인하였다.

대용량 태양광 발전용 멀티센트럴 시스템 (Multi-Central System for Large Scale PV Power Generation)

  • 박종형;고광수;김흥근;노의철;전태원
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.427-432
    • /
    • 2012
  • This paper proposes efficient operation method of PV system consisted of multi-central which is suitable for large scale system. The multi-central system used switch at a DC-link and applied proposed algorithm can improve the efficiency and the reliability on the existing system. This algorithm, with advantage of Multi-Central system can minimize the effect of different characteristic of each PV array due to a shadow or damaged PV cell. Each system is analysed and maximum power point tracking control, DC-link voltage control and output current control is used commonly. The validity is verified after comparing of the existing system and proposed system by simulation.

  • PDF

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • 제6권3호
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

실제 날씨를 고려한 PV-MPPT 제어기의 최적 주기와 변량전압 (Optimum Control Period and Perturbation Voltage for PV-MPPT Controller Considering Real Wether Condition)

  • 류단비;김용중;김효성
    • 전력전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2020
  • Solar power generation systems require maximum power point tracking (MPPT) control to operate PV panels at their maximum power point (MPP). Most conventional MPPT algorithms are based on the slope-tracking concept. A typical slope-tracking method is the perturb and observe (P&O) algorithm. The P&O algorithm measures the current and voltage of a PV panel to find the operating point of the voltage at which the calculated power is maximized. However, the measurement error of the sensor causes irregularity in the calculation of the generated power and voltage control. This irregularity leads to the problem of not finding the correct MPP operating point. In this work, the power output of a PV panel based on the P&O algorithm is simulated by considering the insolation profiles from typical clear and cloudy weather conditions and the errors of current and voltage sensors. Simulation analysis suggests the optimal control period and perturbation voltage of MPPT to maximize its target efficiency under real weather conditions with sensor tolerance.

단독운전검출을 위한 능동적 주파수 변화 정궤환기법 (Active Frequency Drift Positive Feedback Method for Anti-islanding)

  • 소정훈;정영석;유권종;유병규;이기옥;최주엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1684-1686
    • /
    • 2005
  • As photovoltaic(PV) power generation systems become more common, it will be necessary to investigate islanding detection method for PV systems. Islanding of PV systems can cause a variety of problems and must be prevented. However, if the real and reactive power of load and PV system are closely matched, islanding detection by passive methods becomes difficult. Also, most active methods lose effectiveness when there are several PV systems feeding the same island. The active frequency drift positive feedback method(AFDPF) enables islanding detection by forcing the frequency of the voltage in the island to drift up or down. In this paper the research for the minimum value of chopping fraction gain applied digital phase-locked-loop(DPLL) to AFDPF considering output power quality and islanding prevention performance are performed by simulation and experiment in IEEE Std 929-2000 islanding test.

  • PDF

태양광 발전 시스템을 위한 원격 통합 모니터링 시스템의 구축 및 운영분석

  • 홍성민;이용호;심헌
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.182-190
    • /
    • 2005
  • This paper proposes central monitoring system(PVCMS) based on a TCP/IP network for effective integrating management about photovoltaic systems. We don't gain confidence the result of production simulation, because the output of PV system have many various environmental change factor. So if we can obtain real operated data about each sites and system types to use PVCMS, we can define the environment change factor to compare with simulation data. And this paper try to access about total management and data analysis methods of renewable energy through results analysis to synthesize of the operation.

  • PDF

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권4호
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.

배터리 충전기를 위한 연속전류를 갖는 DC-DC 컨버터에 관한 연구 (Study of DC-DC Converter with Continuous output Current for Battery Charger)

  • 바이사;김홍성;김영식;이영진;자야;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.193-195
    • /
    • 2008
  • This paper proposed dc-dc converter with continuous output current for battery charger. If we charge energy storage device by conventional boost converter, current flows into the discontinuous and as a result reduces the life-time of battery. The output voltage of dc-dc converter should be higher than voltage of across the battery, specially if charging by PV there is a fluctuation of voltage due change of insolation and temperature, therefore will boost and regulate this voltage. The proposal converter includes forward converter and the output voltage of the proposal converter looks like an input voltage and forward output voltage's add. This topology was tested on simulation and experimentation. Simulation and experimentation results indicated that the proposal topology is useful for battery charging because the output current of the converter flows continuously and perfectly.

  • PDF