• Title/Summary/Keyword: PV Inverters

Search Result 71, Processing Time 0.029 seconds

A Modified Single-Phase Transformerless Z-Source Photovoltaic Grid-Connected Inverter

  • Liu, Hongpeng;Liu, Guihua;Ran, Yan;Wang, Gaolin;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1217-1226
    • /
    • 2015
  • In a grid-connected photovoltaic (PV) system, the traditional Z-source inverter uses a low frequency transformer to ensure galvanic isolation between the grid and the PV system. In order to combine the advantages of both Z-source inverters and transformerless PV inverters, this paper presents a modified single-phase transformerless Z-source PV grid-connected inverter and a corresponding PWM strategy to eliminate the ground leakage current. By utilizing two reversed-biased diodes, the path for the leakage current is blocked during the shoot-through state. Meanwhile, by turning off an additional switch, the PV array is decoupled from the grid during the freewheeling state. In this paper, the operation principle, PWM strategy and common-mode (CM) characteristic of the modified transformerless Z-source inverter are illustrated. Furthermore, the influence of the junction capacitances of the power switches is analyzed in detail. The total losses of the main electrical components are evaluated and compared. Finally, a theoretical analysis is presented and corroborated by experimental results from a 1-kW laboratory prototype.

A Simplified SVPWM for Three Level Inverters to Eliminate Leakage Currents in Transformeless Photovoltaic Systems (무변압기형 태양광 시스템에서 누설전류를 제거하기 위한 3레벨 인버터의 단순 SVPWM)

  • Ansari, Arsalan;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.319-328
    • /
    • 2016
  • This paper proposes a simplified SVPWM for three level inverters in transformerless photovoltaic (PV) systems. With the proposed SVPWM the three level space vector (SV) diagram is divided into only six sectors as in conventional two level SV diagram in such a way that only seven SVs are used among all the available SVs of three level inverter. The main features of the proposed SVPWM are that it is simple to implement, less switching losses as compared to conventional SVPWM and most importantly it eliminates the leakage currents in transformerless PV systems. Detailed theoretical analysis of the proposed SVPWM are presented and verified by numerical simulations and experimental results.

Variable Structure PWM Controller for Highly Efficient PV Inverters

  • Oh, Seong-Jin;SunWoo, Myoung-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.866-873
    • /
    • 2009
  • In general, the output voltage level of a PV array varies widely at various irradiances and temperatures. The MPP (Maximum Power Point) range of a medium- or high-power PV PCS is normally 450~830Vdc or 300~600Vdc. This means the PV PCS should operate in a wide range of modulation indexes. The PV PCS should satisfy the harmonic current requirement that the TDD (Total demand distortion) shall not exceed 5%. This paper proposes a new PWM control method for a medium- or high-power PV PCS which increases the efficiency of power conversion in all operation ranges with acceptable harmonic ripple currents. This paper compares and analyzes appropriate PWM schemes for the PV PCS in the view points of conversion efficiency and current harmonics.

Separation Inverter Noise and Detection of DC Series Arc in PV System Based on Discrete Wavelet Transform and High Frequency Noise Component Analysis (DWT 및 고주파 노이즈 성분 분석을 이용한 PV 시스템 인버터 노이즈 구분 및 직렬 아크 검출)

  • Ahn, Jae-Beom;Jo, Hyun-Bin;Lee, Jin-Han;Cho, Chan-Gi;Lee, Ki-Duk;Lee, Jin;Lim, Seung-Beom;Ryo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.271-276
    • /
    • 2021
  • Arc fault detector based on multilevel DWT with analysis of high-frequency noise components over 100 kHz is proposed in this study to improve the performance in detecting serial arcs and distinguishing them from inverter noise in PV systems. PV inverters generally operate at a frequency range of 20-50 kHz for switching operation and maximum power tracking control, and the effect of these frequency components on the signal for arc detection leads to negative arc detection. High-speed ADC and multilevel DWT are used in this study to analyze frequency components above 100 kHz. Such high frequency components are less influenced by inverter noise and utilized to detect as well as separate DC series arc from inverter noise. Arc detectors identify the input current of PV inverters using a Rogowski coil. The sensed signal is filtered, amplified, and used in 800kSPS ADC and DWT analysis and arc occurrence determination in DSP. An arc detection simulation facility in UL1699B was constructed and AFD tests the proposed detector were conducted to verify the performance of arc detection and performance of distinction of the negative arc. The satisfactory performance of the arc detector meets the standard of arc detection and extinguishing time of UL1699B with an arc detection time of approximately 0.11 seconds.

Novel AFD method of islanding detection with a periodic zero current for improving on islanding detection for grid-connected Photovoltaic inverters (계통연계형 태양광발전 인버터를 위한 주기적인 영전류 구간을 가지는 새로운 AFD 단독운전 검출기법)

  • Ko, Moon-Ju;Choy, Ick;Choi, Ju-Yeop;Song, Seung-Ho;Lee, Ki-Ok
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.17-23
    • /
    • 2006
  • This paper proposes a novel active frequency drift (AFD) method for the islanding prevention of grid-connected photovoltaic inverter. To detect the islanding phenomenon of grid-connected photovoltaic (PV) inverters concerning about the safety hazards and the damage to other electric equipments, many kinds of anti-islanding methods have been presented. Among them, AFD method using chopping fraction enables the islanding detection to drift up (or down) the frequency of the voltage during the islanding situation. In this paper, injecting the periodic zero current into the basic AFD method is proposed. This proposed method shows the analytical design value of cf to meet the test procedure of IEEE Std. 1547 with various load conditions. Detection of islanding is verified using simulation tool PSIM.

A Pre-Regulated Single-Sourced 27-level ACHB Inverter without Regeneration (회생모드가 없는 단일전원 27레벨 캐스케이드 H-브리지 인버터)

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Lee, Chun-Gu;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.95-96
    • /
    • 2015
  • In this paper, a single-sourced PV PCS using the trinary asymmetric MLI with a single-ended pre-regulator is proposed. Trinary based asymmetric CHB inverters provide higher output levels for the same number of cells compared to other CHB inverters. However, there is an issue of regeneration with trinary asymmetric inverters and this complicates the system with requirement of bi-directional converters at the input. Modified commutation strategies have been used to remove the regeneration issue with compromise in THD. The single-ended pre-regulator provides the isolated dc-link voltage for the individual H-bridge cells with the advantage of having a single switch and magnetic component. This implementation increases the magnetic utilization of the inductor core and reduces the switching loss in the pre-regulator and also the reduced parts count contributes to the cost competiveness of the proposed PCS. The proposed PV PCS has been verified using simulation results in this paper.

  • PDF

Photovoltaic Micro Converter Operated in Boundary Conduction Mode Interfaced with DC Distribution System

  • Seo, Gab-Su;Shin, Jong-Won;Cho, Bo-Hyung;Lee, Kyu-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.44-45
    • /
    • 2011
  • Research on photovoltaic (PV) generation is taking a lot of attention due to its infinity and environment-friendliness with decrease of price per PV cell. While central inverters connect group of PV modules to utility grid in which maximum power point tracking (MPPT) for each module is difficult, micro inverter is attached on each module so that MPPT for individual modules can be easily achieved. Moreover, energy generation and consumption efficiency can be much improved by employing direct current (DC) distribution system. In this paper, a digitally controlled PV micro converter interfacing PV to DC distribution system is proposed. Boundary conduction mode (BCM) is utilized to achieve zero voltage switching (ZVS) of active switch and eliminate reverse recovery problem of passive switch. A 120W prototype boost PV micro converter is implemented to verify the feasibility and experimental results show higher than 98% efficiency at peak power and 97.29% of European efficiency.

  • PDF

Design and Application of a Photovoltaic Array Simulator with Partial Shading Capability

  • Beser, Ersoy
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1259-1269
    • /
    • 2019
  • PV system performance is dependent on different irradiations and temperature values in addition to the capability of the employed PV inverter / maximum power point tracker (MPPT) circuit or algorithm. Therefore, it would be appropriate to use a PV simulator capable of producing identical repeatable conditions regardless of the weather to evaluate the performance of inverter / MPPT circuits and algorithms. In accordance with this purpose, a photovoltaic (PV) array simulator is presented in this paper. The simulator is designed to generate current-voltage (I-V) and power-voltage (P-V) curves of a PV panel. Series connected cascaded modules constitute the basic part of the simulator. This feature also allows for the modeling of PV arrays since the number of modules can be increased and high voltage values can be reached with the simulator. In addition, the curves obtained at the simulator output become similar to the actual curves of sample PV panels with an increase in the number of modules. In order to show the validity of the proposed simulator, it was simulated for various situations such as panels under full irradiance and partial shading conditions. After completing simulations, experiments were realized to support the simulation study. Both simulation and experimental results show that the proposed simulator will be very useful for researchers to carry out PV studies under laboratory conditions.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.

Investigation of Instability in Multiple Grid-Connected Inverters with LCL Output Filters

  • Asghari, Fariba;Safavizadeh, Arash;Karshenas, Hamid Reza
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.757-765
    • /
    • 2018
  • This paper deals with the instability and resonant phenomena in distribution systems with multiple grid-connected inverters with an LCL output filter. The penetration of roof-top and other types of small photovoltaic (PV) grid-connected systems is rapidly increasing in distribution grids due to the attractive incentives set forth by different governments. When the number of such grid-connected inverters increases, their interaction with the distribution grid may cause undesirable effects such as instability and resonance. In this paper, a grid system with several grid-connected inverters is studied. Since proportional-resonant (PR) controllers are becoming more popular, it is assumed that most inverters use this type of controller. An LCL filter is also considered at the inverters output to make the case as realistic as possible. A complete modeling of this system is presented. Consequently, it is shown that such a system is prone to instability due to the interactions of the inverter controllers. A modification of PR controllers is presented where the output capacitor is virtually decreased. As a result, the instability is avoided. Simulation results are presented and show a good agreement with the theoretical studies. Experimental results obtained on a laboratory setup show the validity of the analysis.