• 제목/요약/키워드: PV Cell

검색결과 502건 처리시간 0.032초

태양전지어레이 순시 출력변동에 의한 외란의 억제기능을 갖는 계통연계형 태양광발전 시스템 (Grid Connected PV System with a Function to Suppress Disturbances caused by Solar-cell Array Instantaneous Output Power Fluctuation)

  • 김홍성;최규하;유권종
    • 태양에너지
    • /
    • 제19권4호
    • /
    • pp.63-69
    • /
    • 1999
  • The conventional grid connected PV(Photovoltaic) system has a unstable output pattern due to its dependence on the weather condition, although solar-cell array averagely has a regular output characteristics to have a peak output nearly at noon. Therefore assuming the high density grid connection in the future, this unstable output pattern can be one of the main reasons to generate power disturbance such as voltage variation, frequency variation and harmonic voltage generation in low voltage distribution line. However general grid connected solar-cell system do not have functions to cope with these disturbances. Therefore this study proposed a advanced type grid connected PV system with functions to suppress output power fluctuation due to solar-cell array output variation and showed the levelling effect of fluctuation due to instantaneous array output variation.

  • PDF

태양광 발전시스템의 환경조건을 고려한 PV 모듈 구성 (PV Module Configuration Considering Environment Conditions of Photovoltaic System)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제28권2호
    • /
    • pp.31-41
    • /
    • 2014
  • This paper proposes the configuration of photovoltaic(PV) module considering the environment conditions of the PV system. The PV system is consisted of the series-parallel connection of the PV module. When shadows or changes of the radiation or an electrical characteristic in the solar cell are happened to PV system, the serious power loss will occur. If the PV module connected in series has the shadows, the output current is restricted to current of shaded PV module. Also if shadow is occurred to the parallel connection PV module, the output voltage is limited to voltage of shaded PV module. These problems are caused power loss. Therefore, this paper proposes the method that makes the output power of the PV module equalize by reconfiguration of PV module using the switching considering these environment conditions. A validity of the method proposed in this paper proves through comparing with performance of conventional PV module.

지붕 설치형 결정질 실리콘 태양전지모듈의 온도 특성 (Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics)

  • 김경수;강기환;유권종;윤순길
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.11-18
    • /
    • 2012
  • To expect accurately the maximum power of solar cell module under various installation conditions, it is required to know the performance characteristics like temperature dependence. Today, the PV (photovoltaic) market in Korea has been growing. Also BIPV (building integrated photovoltaic) systems are diversified and become popular. But thermal dependence of PV module is little known to customers and system installers. In IEC 61215,a regulation for testing the crystalline silicon solar cell module, the testing method is specified for modules. However there is limitation for testing the module with diverse application examples. In extreme installation method, there is no air flow between rear side of module and ambient, and it can induce temperature increase. In this paper, we studied the roof type installation of PV module on the surface of one-axis tracker system. We measured temperature on every component of PV module and compared to open-rack structure. As a result, we provide the foundation that explains temperature characteristics and NOCT (nominal operation cell temperature) difference. The detail description will be specified as the following paper.

Heat Shocking에 의한 결정질 실리콘 Solar Cell의 출력특성 (The Characteristic of Crystalline Si Solar Cell by Heat Shocking)

  • 신준오;정태희;김태범;강기환;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.246-250
    • /
    • 2009
  • String & tabbing step in the crystalline PV module manufacturing process for the temperature directly affects solar cells. In fact, in the manufacture of PV modules tend to be temperature factor and the corresponding changes n the output shows the same characteristics. In this journal, it will be considered about thermal characteristics, especially changes of characteristic in high temperature of the solar cell through experiment that we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. And we can think about the possibility of efficiency improvements over looks in PV module manufacturing processes.

  • PDF

유무연 용융도금 리본에 따른 결정질 실리콘 태양전지 모듈 열화거동 (Degradation Behavior of Eutectic and Pb-free Solder Plated Ribbon in Crystalline Silicon Photovoltaic Module)

  • 김주희;김아영;박노창;하정원;이상권;홍원식
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.75-81
    • /
    • 2014
  • Usage of heavy metal element (Pb, Hg and Cd etc.) in electronic devices have been restricted due to the environmental banning of the European Union, such as WEEE and RoHS. Therefore, it is needed to develop the Pb-free solder plated ribbon in photovoltaic (PV) module. This study described that degradation characteristics of PV module under damp heat (DH, $85^{\circ}C$ and 85% R.H.) condition test for 1,000 h. Solar cell ribbons were utilized to hot dipping plate with Pb-free solder alloys. Two types of Pb-free solder plated ribbons, Sn-3.0Ag-0.5Cu (SAC305) and Sn-48Bi-2Ag, and an electroless Sn-40Pb solder hot dipping plated ribbon as a reference sample were prepared to evaluate degradation characteristics. To detect the degradation of PV module with the eutectic and Pb-free solder plated ribbons, I-V curve, electro-luminescence (EL) and cross-sectional SEM analysis were carried out. DH test results show that the reason of maximum power (Pm) drop was mainly due to the decrease fill factor (FF). It was attributed to the crack or oxidation of interface between the cell and the ribbon. Among PV modules with the eutectic and Pb-free solder plated ribbon, the PV module with SAC305 ribbon relatively showed higher stability after DH test than the case of PV module with Sn-40Pb and Sn-48Bi-2Ag solder plated ribbons.

PV모듈 제조공정에서 Interconnection에 따른 전기적 손실 특성 분석 (The Analysis of electrical loss characteristics by interconnection during PV module fabrication process)

  • 이진섭;강기환;박지홍;유권종;안형근;한득영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.216-217
    • /
    • 2007
  • In this study, we analyzed the electrical loss characteristics between ribbon and output terminal of constituent material according to electrical resistance during interconnection process of PV module. From this result, the electrical output power reduction rate caused by interaction between ribbon and cell's interconnection was 2.88%. There was 1W electrical output power reduction through the 16 solar cells. So it is expected that the wider size of PV module gives the higher loss in electricity production. Also, the average output power of PV module passed lamination process was increased by 0.081W per one solar cell and the increase rate was 3.7%.PV module's electrical loss before and after lamination process according to constituent material's terminal was 0.49W and 0.50W, respectively.

  • PDF

MPPT 제어기능을 갖는 마이크로 빛에너지 하베스팅 회로 (A Micro Solar Energy Harvesting Circuit with MPPT Control)

  • 윤은정;박종태;유종근
    • 전자공학회논문지
    • /
    • 제50권6호
    • /
    • pp.105-113
    • /
    • 2013
  • 본 논문에서는 0.5V 이하의 낮은 전압을 출력하는 초소형 PV(photovoltaic) 셀을 이용한 MPPT(Maximum Power Point Tracking) 제어 기능을 갖는 마이크로 빛에너지 하베스팅 시스템을 제안한다. MPPT 제어는 PV 셀의 개방전압과 MPP(Maximum Power Point) 전압간의 비례관계를 이용하여, 파일럿(pilot) PV 셀로 하여금 주(main) PV 셀의 MPP를 실시간 추적할 수 있도록 설계하였다. 제안된 회로는 0.18um CMOS 공정으로 설계되었으며, 칩 면적은 부하단 전하펌프와 패드를 포함하여 $900um{\times}1370um$이다. 제작된 칩을 측정한 결과 설계된 회로가 빛 세기의 변화에 따른 MPP 전압 변화를 실시간 트래킹하는 것을 확인하였다. 또한 MPPT 제어기능을 적용했을 때 부하가 큰 경우에도 MPP 근처의 전압을 부하에 공급함으로써 MPPT 제어기능을 적용하지 않았을 때에 비해 더 많은 전력을 부하로 공급하는 것을 확인하였다. 기존의 마이크로 빛에너지 하베스팅 회로에 비해 제안된 회로는 제어회로 구동을 위해 미리 충전된 배터리가 필요하지 않기 때문에 배터리를 사용하지 않는 초소형 자가발전 시스템에 적합하다.

태양전지의 출력 불균일에 대한 최대전력 알고리즘 연구 (The Study on MPPT Algorithm of PV Module by mismatched Solar Cell)

  • 심재휘;최주엽;최익;이상철;이동하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.143-148
    • /
    • 2011
  • This paper is about the study on MPPT algorithm of PV module where mismatched solar cells exist. PSIM simulation tool was used to verify new MPPT algorithm and PV module modeling was made. It was verified for the proposed algorithm to track the right MPP of PV boost converter under mismatched condition, which shows a shading effect in PV module. An experiment will be done soon using PV simulator for verification of the proposed algorithm.

  • PDF

스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구 (Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level)

  • 윤종호;오명환;강기환;이재범
    • 한국태양에너지학회 논문집
    • /
    • 제32권4호
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.

다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가 (Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period)

  • 정동은;염규환;이찬욱;도성록
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.