• Title/Summary/Keyword: PV 모듈 출력 특성

Search Result 48, Processing Time 0.03 seconds

The long-term operating evaluation of the grid connected PV power system (중규모 태양광발전시스템 장기 실증운전 특성)

  • Kim, Eui-Hwan;Ahn, Kyo-Sang;Lim, Hee-Cheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.41-44
    • /
    • 2009
  • 본 논문에서는 태양광발전이 본격적으로 보급 활성화 되기 전인 1999년 4월에 50 kVA 계통연계형 태양광 발전시스템 개발과제로 구축된 50kWp급 중규모의 계통연계 태양광 발전시스템의 약 10년간의 장기 실증운전을 통하여 취득한 자료를 기반으로 장기운전에 따른 운전특성 변화를 분석하였다. 본 설비는 50kVA급 PCS, 3kVA급 PCS 및 모듈 50kWp의 용량으로 1999년도에 한전 전력연구원 구내에서 실증시험용으로 구축되었으며, 장기운전에 따른 출력감소율은 10년간 전년도 대비 연 2.73% 이며, 발전설비 이용율은 11.04% 로 분석되었다

  • PDF

A Study on Output Enhancement Method of PV Array Using Electrical Circuit Reconfiguration Algorithm (전기적 회로절체 알고리즘에 의한 태양광 어레이의 출력향상 방안에 관한 연구)

  • Kim, Byung-Mok;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.9-17
    • /
    • 2020
  • Recently, RES (renewable energy source) projects have been spreading all over the world as an alternative to solve the shortage of energy and environmental problems caused by fossil fuel consumption. The Korean government also supported the policy and demonstration project to increase the proportion of renewable energy to 63.8[GW] until 2030, which is 20[%] of the total power generation. On the other hand, output loss of a PV array can occur when the surrounding high-rise buildings and trees shade a PV array. Therefore, this paper proposes an algorithm to improve the output loss of a PV array, which electrically changes a circuit configuration of PV modules by wiring and switching devices. Furthermore, this study modeled a PV system based on PSIM S/W, which was composed of a PV array, a circuit configuration device, and a grid-connected inverter. From the simulations results with the modeling and test device, the existing method showed no output when 50% of the shade occurs in PV modules. In contrast, the proposed method could produce the output because the voltage in the PV module could be restored to 246[V], and the operation efficiency of the PV system could be improved by the operation algorithm of the circuit configuration device.

Electrical Characteristics Analysis for single-crystalline and multi-crystalline PV module optical character. (단결정과 다결정 태양전지 모듈의 광학적 특성에 따른 전기적 출력 특성 분석)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyunggun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1100-1101
    • /
    • 2008
  • After lamination process, Isc is increased by sheet reflection. This paper presents the electrical output characteristics by back sheet reflection. The experiments was conducted by using single crystalline and multi crystalline PV module. The reflection area of single crystalline PV module is larger than multi one due to the difference of solar cell manufacturing. The experiments show that the increased performance ratio of single crystalline PV module output power is 1.55% rather than that of multi crystalline PV module output power is 1.13%. In addition, it is expected that the output power of single one rather than multi-one is increased by the lower temperature when the PV module is installed outside. The results can be reconsidered by the test material and test process. Back sheet used for humidity prevention makes PV module output power increasing.

  • PDF

A Study on the Off-Grid Photovoltaic Generation System with Sequential Voltage System (순차전압시스템을 고려한 독립형 태양광 발전 시스템에 관한 연구)

  • Kim, Gu-Yong;Bae, Jun-Hyung;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.364-367
    • /
    • 2020
  • This paper presents the off-grid PV-ESS system of sequential voltage control method applied to OR logic gate. The conventional off-grid PV-ESS system with the low-voltage series connection has problems due to capacity expansion. To solve these problems, this paper proposes a noble PV-ESS system with high efficiency and low cost by applying sequential voltage control technique of the high-voltage series connection of analog circuit type. The input voltage of DC to AC inverter can be converted from the low-voltage by the combinations of series connection of the conventional cascaded 24V solar cell unit modules to the high-voltage of 384V in battery. The output voltage of the battery was 384V as the each input voltage of three phase DC to AC inverter, and the each output voltage of three phase 10kW DC to AC inverter is designed to be AC380V@60Hz as the line to line rms voltage value. To prove the validity of the theoretical analysis by PSIM simulation, the operating characteristics of sequential voltage control system with OR logic gate were confirmed through experiment results.

A Study on PV-ESS System with sequential voltage control capable of low cost and high reliability (저비용 및 고신뢰성이 가능한 순차전압제어 태양광 ESS 시스템에 관한 연구)

  • Oh, Ji-Yong;Lee, Jong-Hyeon;Kim, Ku-Yong;Kim, Hae-Jun;Park, Dong-Han;Won, Jae-Sun;Kim, Jong-Hae
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.437-438
    • /
    • 2019
  • 본 논문에서는 OR게이트를 적용한 순차전압제어방식의 24V 태양광 단위 모듈 확장형 태양광-ESS 시스템을 나타내고 있다. 저압연계방식으로 용량확대에 따른 문제점을 가지고 있었던 기존 태양광 시스템에 고압의 아날로그 방식의 순차전압 제어 방식을 적용함으로써 고효율, 저가격이 가능하다. 본 논문은 기존 24V 태양광 단위 모듈의 직렬연결 확장형 고압 배터리의 출력전압 384V을 DC-AC 인버터의 입력 전압으로 하여 인버터의 출력 전압과 출력 전력을 AC380[V]@60[Hz]과 10kW로 구성하여 실험을 통해 OR게이트를 적용한 순차전압제어시스템의 동작 특성을 확인하였다.

  • PDF

The Electrical Characteristics of Shading Effect in Photovoltaic Module (PV모듈에서 그림자에 의한 전기적 특성)

  • Kim, Seung-Tae;Kang, Gi-Hwan;Park, Ji-Hong;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.257-262
    • /
    • 2008
  • In this paper, we study the electric characteristics of shading effects in photovoltaic module in case of outdoor operation. When fabricating PV module, solar cells are connected serially to obtain the high voltage because of its low open circuit voltage. And total current is determined by lowest current among solar cells. When the shading happens on PV module's surface, the current of shaded solar cell determine the total current flow. Because of this, generally by-pass diode is installed on junction box. The bypass diode operate when revered and shaded solar cell's voltage is over 0.6 voltage. The reverse-biased solar cell gives reduced maximum power of PV module and might give negative effect on durability. So, adequate by-pass installation and selection is needed.

  • PDF

Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics (지붕 설치형 결정질 실리콘 태양전지모듈의 온도 특성)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2012
  • To expect accurately the maximum power of solar cell module under various installation conditions, it is required to know the performance characteristics like temperature dependence. Today, the PV (photovoltaic) market in Korea has been growing. Also BIPV (building integrated photovoltaic) systems are diversified and become popular. But thermal dependence of PV module is little known to customers and system installers. In IEC 61215,a regulation for testing the crystalline silicon solar cell module, the testing method is specified for modules. However there is limitation for testing the module with diverse application examples. In extreme installation method, there is no air flow between rear side of module and ambient, and it can induce temperature increase. In this paper, we studied the roof type installation of PV module on the surface of one-axis tracker system. We measured temperature on every component of PV module and compared to open-rack structure. As a result, we provide the foundation that explains temperature characteristics and NOCT (nominal operation cell temperature) difference. The detail description will be specified as the following paper.

The comparison of maximum output power of PV module by solar cell breakage (PV 모듈에서 셀의 파손에 따른 전기적 출력 특성 비교)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.9-10
    • /
    • 2007
  • In this paper, we investigated the effect of solar cell breakage on maximum output power of PV module. The test result using artificial light source didn't give any change in output power in case of crack near electrical ribbon. Also, there was a reduction in output power in case of increasing of crack area far from electrical ribbon. But, this experiment is under artificial light source test method. So, when such a PV module is outdoor for a long time, there would be problems on electrical output power and durability because of thermal aging phenomenon of solar cell breakage.

  • PDF

Characteristics Analysis of Proto-type Microconverter for Power Output Compensation of Photovoltaic Modules (태양광 모듈 출력 보상을 위한 마이크로컨버터 시제품 동작 특성 분석)

  • Jihyun, Kim;Ju-Hee, Kim;Jeongjun, Lee;Jongsung, Park;Changheon, Kim
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.133-137
    • /
    • 2022
  • The economic feasibility of a photovoltaic (PV) system is greatly influenced by the initial investment cost for system installation. Also, electricity generation by PV system is highly important. The profits competitiveness of PV system will be maximized through intelligent operation and maintenance (O&M). Here, we developed a microconverter which can maximize electricity generation from PV modules by tracking the maximum power point of PV modules, and help efficient O&M. Also, the microconverter mitigates current mismatch caused by shading, hence maximize power generation. The microconverters were installed PV modules and demonstrated through the field tests. Power outputs such as voltage, string current were measured with variuos weather environments and partial shadings. We found that PV modules with the microconvertors shows 12.05% higher power generation compared to the reference PV modules.

The Analysis on Maximum Output Power Characteristics of Crystalline Silicon Photovoltaic Module by Change of Environmental Effects (환경변화 요인에 따른 결정질 실리콘 태양전지모듈의 최대출력 특성 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.23-28
    • /
    • 2007
  • In this study, we analyzed the maximum output power characteristics of crystalline silicon photovoltaic module by change of environmental effects. The electrical, optical and thermal property of PV modules were investigated during outdoor test period about 70 days. There was a fluctuation in maximum output power by change in transmittance caused by environment effects like rain, snow and dust. The effects of external environmental change were analyzed using climate data. Also local thermal temperature variation and transmittance imbalance on surface of PV module which might lead degradation of constituent material were detected using infrared camera. The further analysis is describe in the following paper.