• 제목/요약/키워드: PV/Thermal system

검색결과 85건 처리시간 0.022초

냉난방부하 절감을 위한 경사형 이중외피시스템의 성능연구 (A study on the efficiency of sloped type Double-skin System for the Curtailment of Heating/Cooling Load)

  • 안형준;김영탁;최창호;이현우
    • 한국태양에너지학회 논문집
    • /
    • 제24권4호
    • /
    • pp.77-87
    • /
    • 2004
  • BIPV or double skin applied to the surface of the building, power and thermal load cannot both be increased. In the case of BIPV, because it is applied to the facade, incident solar energy decreases and efficiency drops off. The system in this paper complements these disadvantages and aims to decrease the heating & cooling load by transforming solar energy to electronic and thermal energy. The research in this paper is about the applicability of the clear PV attached double-skin system. And the PV electronic generation and the factors that affect the heating & cooling load such as the daily radiation, sun shading ratio, heating & cooling load, daylight luminance and glare distributions in the building are simulated.

태양광열 시스템의 신뢰성 평가에 관한 연구 (A Study on the Reliability Assesment of Solar Photovoltaic and Thermal Collector System)

  • 박태국;배승훈;김상교;김선민;김대환;엄학용;이근휘
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.49-64
    • /
    • 2020
  • Photovoltaic and Thermal collector (PV/T) systems are renewable energy devices that can produce electricity and heat energy simultaneously using solar panels and heat exchangers. Since PV/T systems are exposed to the outdoors, their reliability is affected by various environmental factors. This paper presents a reliability test for a PV/T system and evaluates the test results. The reliability assessment entails performance, environment, safety, and life tests. The factor that had the greatest influence on the life of the system was the hydraulic pressure applied to the heat exchanger. A test was conducted by repeatedly applying pressure to the PV/T system, and a reliability analysis was conducted based on the test results. As a result, the shape parameter (β) value of 5.6658 and the B10life 308,577 cycles at the lower 95% confidence interval were obtained.

주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구 (Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System)

  • 윤종호;한규복;안영섭
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

실험을 통한 건물통합형 태양광·열(BIPVT) 시스템의 난방성능 평가 (The Heating Performance Evaluation of Heating System with Building-Integrated Photovoltaic/Thermal Collectors)

  • 정선옥;김진희;김지성;박세현;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.113-119
    • /
    • 2012
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that produce thermal energy as well as electricity. In many studies various water type PVT collectors have been proposed in effort to increase their electrical and thermal efficiency. The aim of this study is to evaluate the heating performance of heating system combined with PVT collectors that on integrated building roof. For this study, the BIPVT system of 1.5kWp was installed at the experimental house, and it was incorporated with its heating system. From the experimental results, the solar fraction of the heating system with BIPVT was 15%. It was also found that was analyzed that the heating energy for the house can be reduced by 47%, as the heat gained from BIPVT system pre-heated the water used for heating system.

선행 연구된 태양광열 복합 시스템의 문헌 검토를 통한 성능 및 효율분석 (The Performance and Efficiency Analysis of PVT system : A Review)

  • 어승희;김대현
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.57-66
    • /
    • 2011
  • A Photovoltaic/Thermal(PVT) solar system consists of PV module and thermal absorber plate which convert the absorbed solar radiation into electricity and heat. Meaningful researches and development (R&D) on the PVT technologies have been performed since the 1970s. This paper presents a review of the previous works covering the various types of PVT and their performance analysis in terms of electrical and thermal efficiency. This review compares electrical and thermal efficiency of the different types of PVT collectors and analyzes the parameters affecting PVT performance. Based on the literature review, box channel type PVT with unglazed, or flat plate PVT with glazed have the highest efficiency among them. From the literature review, R&D should be carried out aiming at improving their overall electrical and thermal efficiency, cutting down the cost, and making them more competitive in the energy consumption market.

선행 연구된 태양광열 복합 시스템의 문헌 검토를 통한 성능 및 효율분석 (The Performance and Efficiency Analysis of PVT system : A Review)

  • 어승희;김대현
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.250-255
    • /
    • 2011
  • A Photovoltaic/Thermal(PVT) solar system consists of PV module and thermal absorber plate which convert the absorbed solar radiation into electricity and heat. Meaningful researches and development (R&D) on the PVT technologies have been performed since the 1970s. This paper presents a review of the previous works covering the various types of PVT and their performance analysis in terms of electrical and thermal efficiency. This review compares electrical and thermal efficiency of the different types of PVT collectors and analyzes the parameters affecting PVT performance. Based on the literature review, box charmel type PVT with unglazed, or flat plate PVT with glazed have the highest efficiency among them. From the literature review, R&D should be carried out aiming at improving their overall electrical and thermal efficiency and cutting down the cost, making them more competitive in the energy consumption market.

  • PDF

시뮬레이션을 통한 박스형과 튜브형 태양광열 복합 시스템의 성능 분석 (Numerical approach for comparative performance study of tube type and box type hybrid photovoltaic/thermal system)

  • 바타라이 수절라;김대현
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.9-18
    • /
    • 2011
  • 태양광열 복합 시스템(photovoltaic/thermal hybrid solar system, PV/T)은 태양광 모듈 및 태양열 집열판의 단일화를 통한 전기 및 열에너지의 동시 생산이 가능하도록 구성되고 기존 태양광 모듈의 온도 상승에 따른 효율 저하의 문제점을 보완 및 발생하는 열을 회수하여 온수 생산이 가능한 장치이다. 본 연구에서는 액체형 PV/T 시스템의 대표적인 두 형태인 박스형과 튜브형의 성능 검증을 위하여 수학적 모델링을 통한 두 시스템의 열 및 전기적 성능을 비교 분석하였다. 모델링은 에너지 평형식을 이용하여 시간에 따른 각 부분의 온도의 변화를 예측할 수 있도록 수립되었으며 계산된 결과를 기준으로 전기, 열, 및 전체효율을 도출해 내고, 이를 바탕으로 두 시스템의 성능을 분석하였다. 시뮬레이션 결과를 바탕으로, 박스형 PV/T 시스템의 최고 온수 온도는 $52^{\circ}C$로 예측되었고, 반면에 튜브형은 $48^{\circ}C$에 머물렀다. 또한 열효율은 박스형이 최대 51%, 튜브형이 41%, 전기효율은 박스형이 약 14%, 그리고 튜브형이 13%로 나타났으며, 전체효율은 박스형이 73%, 그리고 튜브형이 64%로 나타나 박스형 PV/T 시스템이 튜브형보다 더 나은 성능을 가지는 것으로 예측되었다. 이는 박스형이 튜브형보다 태양광 모듈과 온수와의 접촉면적이 넓어 더 많은 열전달이 발생하기 때문으로 사료된다.

실험에 의한 공기식 PVT 컬렉터의 열·전기 성능에 관한 연구 (An Experimental Study on Thermal and Electrical Performance of an Air-type PVT Collector)

  • 김상명;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제39권2호
    • /
    • pp.23-32
    • /
    • 2019
  • PVT (Photovoltaic/thermal) system is technology that combines PV and solar thermal collector to produce and use both solar heat and electricity. PVT has the advantage that the energy production per unit area is higher than any single use of PV or solar thermal energy systems because it can produce and use heat and electricity simultaneously. Air-type PVT collectors use air as the heat transfer medium, and the air flow rate and flow pattern are important factors affecting the performance of the PVT collector. In this study, a new air-type PVT collector with improved thermal performance was designed and manufactured. And then thermal and electrical performance and characteristics of air-type PVT collector were analyzed through experiments. For the thermal performance analysis of the PVT collector, the experiment was conducted under the test conditions of ISO 9806:2017 and the electrical performance was analyzed under the same conditions. As a result, the thermal efficiency increased to 26~45% as the inlet flow rate of PVT collector increased from $60{\sim}200m^3/h$. Also, it was confirmed that the air-type PVT collector prevents the PV surface temperature rise according to the operating conditions.

고정식 집속형 PV모듈 복합패널의 BIPV적용성 검토 (A Study on the Application of Fixed-concentrated PV Module Hybrid Panel for BIPV)

  • 서유진;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.77-83
    • /
    • 2005
  • The verified thermal efficiency, thermal capacity confirmed the effects of the cooling system. Therefore, it is useful for preventing the PV cell temperature rising when solar radiation accumulates in summer. When adopting a hybrid panel for the BIPV system, the affected areas include the vertical outside walls facing the south, southeast, and southwest on the curtain walls excluding windows. The standards on replace aluminum panel which were the popular exterior material were investigated, Designing practice made sure that it could be manufactured in various sizes, and confirmed the most proper method to install a hybrid panel in the BIPV system.

건물 적용 유형별 공기식 BIPVT 유닛의 전기 및 열성능 비교에 관한 연구 (A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades)

  • 강준구;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.56-62
    • /
    • 2010
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. PV/thermal collectors, or more generally known as PVT collectors, are devices that operate simultaneously to convert solar energy from the sun into two other useful energies, namely, electricity and heat. This paper compares the experimental performance of BIPVT((Building-Integrated Photovoltaic Thermal) collectors that applied on building roof and facade. There are four different cases: a roof-integrated PVT type and a facade-integrated PVT type, the base models with an air gap between the PV module and the surface, and the improved models for each types with aluminum fins attached to the PV modules. The accumulated thermal energy of the roof-integrated type was 15.8% higher than the facade-integrated regardless of fin attachment. The accumulated electrical energy of the roof-integrated type was 7.6% higher, compared to that of the facade-integrated. The efficiency differences among the collectors may be due to the fact that the pins absorbed heat from the PV module and emitted it to air layer.