• Title/Summary/Keyword: PV(photovoltaic) generation system

Search Result 386, Processing Time 0.026 seconds

Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building (고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안)

  • Lee, Do-Hyun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.

Compensation for Photovoltaic Generation Fluctuation by Use of Pump System with Consideration for Water Demand

  • Imanaka, Masaki;Sasamoto, Hideki;Baba, Jumpei;Higa, Naoto;Shimabuku, Masanori;Kamizato, Ryota
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1304-1310
    • /
    • 2015
  • In remote islands, due to expense of existing generation systems, installation of photovoltaic cells (PVs) and wind turbines has a chance of reducing generation costs. However, in island power systems, even short-term power fluctuations change the frequency of grids because of their small inertia constant. In order to compensate power fluctuations, the authors proposed the power consumption control of pumps which send water to tanks. The power control doesn’t affect water users’ convenience as long as tanks hold water. Based on experimental characteristics of a pump system, this paper shows methods to determine reference power consumption of the system with compensation for short-term PV fluctuations while satisfying water demand. One method uses a PI controller and the other method calculates reference power consumption from water flow reference. Simulations with a PV and a pump system are carried out to find optimum parameters and to compare the methods. Results show that both PI control method and water flow calculation method are useful for satisfying the water demand constraint. The water demand constraint has a little impact to suppression of the short-term power fluctuation in this condition.

Algorithm for Preventing Malfunction and Reclosing in Grid-Connected PV Systems (연계형 태양광발전설비의 새로운 오동작 방지 및 재병입 알고리즘 제안)

  • Hwang, Min-Soo;Jeon, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.70-76
    • /
    • 2012
  • In general, the unidirectional power flow is normal in distribution feeders before activation of distributed power source such as PV. However, the interactive power flow is likely to occur in case of the power system under distributed generation. This interactive power flow can cause an unexpected effect on convectional protection coordination systems designed based only on the unidirectional power flow system. When the power line system encounters a problem, the interactive power flow can be a contributed current source and this makes the fault current bigger or smaller compared to the unidirectional case. The effect of interactive power flow is varied depending on the location of the point to ground fault, relative location of the PV, and connection method. Therefore it is important to analyse characteristics of fault current and interactive flow for various transformer connection and location of the PV. This paper proposes a method of improved protection coordination which can be adopted in the protective device for customers in distribution feeders interconnected with the PV. The proposed method is simulated and analysed using PSCAD/EMTDC under various conditions.

Optimal Operation Schedule of Semi-Fixed PV System and Its Effect on PV Power Generation Efficiency (반고정식 PV 시스템의 운영 스케줄 도출 및 그에 따른 발전 효율 변화 고찰)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.69-77
    • /
    • 2017
  • The amount of solar irradiation obtained by a photovoltaic (PV) solar panel is the major factor determining the power generated by a PV system, and the array tilt angle is critical for maximizing panel radiation acquisition. There are three types of PV systems based on the manner of setting the array tilt angle: fixed, semi-fixed, and tracking systems. A fixed system cannot respond to seasonal solar altitude angle changes, and therefore cannot absorb the maximum available solar radiation. The tracking system continually adjusts the tilt angle to absorb the maximum available radiation, but requires additional cost for equipment, installation, operation, and maintenance. The semi-fixed system is only adjusted periodically (usually seasonally) to obtain more energy than a fixed system at an overall cost that is less than a tracking system. To maximize semi-fixed system efficiency, determining the optimal tilt angle adjustment schedule are required. In this research, we conducted a simulation to derive an optimal operation schedule for a semi-fixed system in Seoul, Korea (latitude $37.5^{\circ}$). We implemented a solar radiation acquisition model and PV genereation model on MATLAB. The optimal operation schedule was derived by changing the number of tilt angle adjustments throughout a year using a Dynamic Algorithm. The results show that adjusting the tilt angle 4 times a year was the most appropriate. and then, generation amount of PV system increased 2.80% compared with the fixed system. This corresponds to 99% compared to daily adjustment model. This increase would be quite valid as the PV system installation area increased.

Efficiency characteristics analysis of residential PV System (주택용 태양광발전시스템의 성능비교 분석)

  • LEE K. Y.;CHOI Y. O.;BAEK H. L.;CHO G. B.;Lee S. G.;KIM D. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.144-146
    • /
    • 2004
  • This paper presents experimental operation with utility invertactive 3kW photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for Demonstration experiment. The status of photovoltaic generation system comp-onents and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for demonstration experiment.

  • PDF

Operating Characteristics of Photovoltaics System for Chosen University Dormitory (조선대학교 기숙사 전원용 PV 시스템의 운전특성)

  • Park J.M.;Choi Y.O.;Lee K.Y.;Oh G.G.;Cho G.B.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.564-566
    • /
    • 2006
  • This paper presents experimental operation with utility interactive 50kW photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

Using Demonstration PV System for Operation Efficiency Analysis (태양광발전시스템의 실증연구를 통한 운용효율 분석)

  • Park Jeong Min;Kim Seong Kyeol;Jung Byung Ho;Cho Geum-Bae;Baek Hyung Rae
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.244-246
    • /
    • 2003
  • This paper presents experimental operation with utility invertactive 3kW photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for Demonstration Complex. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for Demonstration Complex.

  • PDF

A Real-Time Simulation Method for Stand-Alone PV Generation Systems using RTDS (RTDS를 이용한 단독운전 태양광 발전시스템의 실시간 시뮬레이션)

  • Kim, Bong-Tae;Lee, Jae-Deuk;Park, Min-Won;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.190-193
    • /
    • 2001
  • In order to verify the efficiency or availability and stability of photovoltaic(PV) generation systems, huge system apparatuses are needed, in general, in which an actual size of solar panel, a type of converter system and some amount of load facilities should be installed in a particular location. It is also hardly possible to compare a Maximum Power Point Tracking (MPPT) control scheme with others under the same weather and load conditions in an actual PV generation system. The only and a possible way to bring above-mentioned problem to be solved is to realize a transient simulation scheme for PV generation systems using real weather conditions such as insolation and surface temperature of solar cell. The authors, in this paper, introduces a novel simulation method, which is based on a real-time digital simulator (RTDS), for PV generation systems under the real weather conditions. Firstly, VI characteristic equation of a solar cell is developed as an empirical formula and reconstructed in the RTDS system, then the real data of weather conditions are interfaced to the analogue inputs of the RTDS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme in this paper. The results shows that the cost effective verifying for the efficiency or availability and stability of PV generation systems and the comparison research of various control schemes like MPPT under the same real weather conditions are possible.

  • PDF

The Study of Optimal Operation Development of PV + ESS Active System for Zero Energy Building (제로에너지건물 구축을 위한 PV + ESS 액티브 시스템의 최적운영개발에 관한 연구)

  • Woo, Sung-Min;Moon, Jin-Chel;Ahn, Jong-Wook;Kim, Yong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.53-63
    • /
    • 2019
  • This paper in order to efficiently operate zero energy buildings developed a methodology for optimal operation of PV + ESS active systems. This program consists of three steps. First step is PV optimal operation and second step is PV + ESS optimal operation. Third step is the analysis of the results by PV + ESS optimal operation. The optimal operation of PV + ESS was calculated by using Dynamic Programming (DP). Therefore, the optimal capacity and operating plan of PV + ESS in this study are calculated for electric load at building. This paper conducted case study to verify the validity of the developed algorithm. Also, the sensitivity analysis analyzed the effect of each variable on the optimal operation.

Utility Interactive Photovoltaic Generation System with the Angle of Inclination and Direction (방위각과 경사각에 따른 계통연계형 태양광발전 시스템)

  • Kim, K.B.;Cho, G.B.;Lee, K.Y.;Choi, Y.O.;Baek, H.L.;Kim, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.491-494
    • /
    • 2001
  • This paper presents a utility interactive photovoltaic generation system with the angle of inclination and direction. This paper summarizes the results of these efforts by offering a snapshot of the configuration of photovoltaic in residential applications. The status of PV system components and inter-connection and safety equipment will be summarized, also. This System is able to alteration the angle of inclination and direction. Hence this paper discusses only points that might be useful for application.

  • PDF