• Title/Summary/Keyword: PV(photovoltaic) generation system

Search Result 386, Processing Time 0.034 seconds

Development of a novel tracking for efficiency improvement of PV system with sensor method (센서방식 태양광 발전시스템의 효율개선을 위한 새로운 추적알고리즘 개발)

  • Jang, Mi-Geum;Ko, Jae-Sub;Choi, Jung-Sik;Kang, Sung-Jun;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.424-427
    • /
    • 2009
  • This paper reposes a novel tracking algerian for efficiency improvement of photovoltaic(PV) system using sensor method PV system of sensor method is exactly impossible to track a sun position when insolation is low or rapidly changed by the clouds and fogs. Also, in this case, tracking device is occurred energy consumption by unnecessary operating. This statement of reason, real power of PV system is not increased than fixed PV system in specified location. Therefore, this paper proposes a novel ticking algorithm considered insolation for efficiency improvement of PV system using sensor method And this paper analyzes the generation volume and proves the validity of proposed algorithm as compared with the conventional PV tracking system using sensor method.

  • PDF

A Study on Micro-Converter of Photovoltaic System for Efficiency Progress (태양광발전시스템의 효율 향상을 위한 마이크로컨버터에 관한 연구)

  • Chae, Young-Kee;Lim, Jung-Yeol
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.159-164
    • /
    • 2014
  • This paper targets the development of micro-converter such as a power converter for photovoltaic module. In corresponding to the poor performance of centralized PV system under partial shading, the power converter for single PV module to maximize the energy harvest from PV module. The power converter is constantly tracking the maximum power point of photovoltaic system and increases energy output power. To minimize the quantity of devices and switchs, 320W solar micro-converter is developed using synchronous rectifier. From the basis of these results, through simulations and experiments were verified efficiency.

The characteristic analysis of POS (PV Output Sensorless) MPPT based 3 phase grid connected PV system (PV Output Sensorless(POS) MPPT법이 적용된 3상 계통연계형 태양광 발전시스템의 특성해석)

  • Park, Sang-Soo;Kim, Gyeong-Hun;Kim, Sang-Yong;Jang, Seong-Jae;Seo, Hyo-Ryong;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1081-1082
    • /
    • 2008
  • Photovoltaic (PV) power generation system has been widely studied as a clean and renewable power source. The purpose of this study is to keep the output power of photovoltaic cells maximum under any weather conditions. There are so many MPPT (Maximum Power Point Tracking) methods. P&O method has been used as a key MPPT method, both voltage and current coming out from PV array have to be feedback in the method. Thus, the system has a complex structure, and may fail to track MPP of PV array when unexpected weather conditions happen. In order to reduce the feedback components, POS MPPT control method was proposed by the authors. In this paper, the authors apply the POS MPPT control method to three phase PCS system. And the effectiveness of the proposed control scheme is demonstrated through PSCAD/EMTDC simulation.

  • PDF

A Study on the Optimal Voltage for MPPT Obtained by only Surface's Temperature of Solar Cell (태양전지 온도 센싱만을 통한 태양광 발전시스템의 최적 운전전압에 관한 연구)

  • Minwon Park;In-Keun Yi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Photovoltaic(PV) system has been studied and watched with keen interest due to a clean and renewable power source. But, the output power of PV system is not only unstable but uncontrollable, because the maximum power point tracking (MPPT) of PV system is still hard with the tracking failure under the sudden fluctuation of irradiance. Authors suggest that the optimal voltage for MPPT be obtained by only solar cell temperature. Having an eye on that the optimal voltage point of solar cell is in proportion to its panel temperature, with operating the power converter whose operating point keeps its input voltage to the optimal voltage imagined by the surface's temperature of PV panel, the maximum power point becomes tenderly possible to be tracked. In order to confirm the availability of the proposed control scheme. And both control methods are simulated not only on the various angle of sampling time of switching control, but also with the real field weather condition. As the results of that, the conversion efficiency between PV panel and converter of the proposed control scheme was much better than that of the power comparison MPPT control, and what is better, the output voltage of PV panel was extremely in stable when the optimal voltage for MPPT is obtained by only solar cell temperature.

Performance Evaluation of the Wall-Type BIPV System Based on the Energy Consumption Unit - A Study for University Lecture Building - (에너지 소비 원단위를 기초로 한 벽면부착형 BIPV 시스템의 성능평가에 관한 연구 - 대학교 강의동 건축물을 대상으로 -)

  • Lee, Kang-Guk;Seo, Won-Duck;Hong, Won-Hwa
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.6
    • /
    • pp.25-32
    • /
    • 2011
  • The building integrated photovoltaic(BIPV) system has a double advantage that it reduces costs for exterior materials and PV panels. It allows the construction of a low-energy building without the need for the additional installation space. At the construction planning stage, however, it requires sufficient evaluation on the efficiency and performance. This study was performed to promote the distribution of photovoltaic power generation system by estimating the potential photovoltaic power generation capacity of the BIPV system installed on the university lecture building and by evaluating the characteristics and performances of window, spandrel and combined attachment types via the simulation of generation capacity per unit area.

  • PDF

A Study on Operating Characteristics and Design Factors of Floating Photovoltaic Generating Facilities (수상태양광 발전시스템의 운영특성 및 설계요소에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1532-1539
    • /
    • 2017
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. K-water (Korea Water Resources Corporation) has been operating two floating photovoltaic system that's capacity is 100 kW and 500 kW respectively since in summer 2011 for commercial generation, and have construction project for 2,000 kW in Boryeong multipurpose Dam and other areas. Furthermore K-water was developing a tracking-type floating photovoltaic system at Daecheong multipurpose Dam and developed and installed an ocean floating photovoltaic demonstration plant at Sihwa Lake in October 2013 for R&D. In this paper, we introduce that structure of floating photovoltaic system include buoyant structure, mooring system and auxiliary device. Especially the rope which is in part of mooring should be always maintain tension under any water level. Also we explain about structure design concept to wind load in an every loading condition and a kind of structure materials and PV structure types used in water environment. Especially ocean floating PV system is affected by tidal current and typhoon. So there are considering the elements in design. Finally we compare with floating and land photovoltaic on power amount. As a result of that we verified the floating photovoltaic system is more about 6.6~14.2 % efficiency than a general land photovoltaic system.

Study on the Elicitation of Parameter in Designing each Capacity of PV System for Power Industry (전력산업용 PV System의 각 용량별 설계 파라미터 도출에 관한 연구)

  • Kim, ByeongMan;Lee, KilSong;Yang, YeonWon;Shin, HyunWoo;Kim, EuiHwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.78.1-78.1
    • /
    • 2010
  • Recently, as much supplied with new-renewable energy, as much invested in PV system. PV system consists of PV module, PCS and Monitering system, and also could be classified into the type and the capacity by installation method and cost etc. When various systems are installed in the field, it is needed to research for applying in the field and establish infrastructure in order to ensure stable efficiency and reliability. In this study, as the basic design of the demonstration test facility, it is designed the basic PV systems for each capacity to test each PCS. In addition, It is drew the climatic conditions such as insolation, temperature and the design parameters such as installation angle, shades for the local demonstration project and expected the generation of each PV system.

  • PDF

Optimal Load Control Method for Solar-Powered House with Energy Storage System (전력저장장치를 이용한 태양광주택의 최적부하제어기법)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.644-651
    • /
    • 2014
  • The renewable energy system and the real-time pricing can provide the significant economic advantage for end-user of residential house. However, according to recent studies, high initial cost of renewable energy system such as photovoltaic (PV) system and lack of suitable load control methods adjusting electric power consumption in response to time-varying price are regarded as the major obstruction for introduction of renewable energy system and real-time pricing in residental household. In this paper, we propose automated optimal load control strategy which aim to achieve not only minimizing the electricity cost but also the increase in the utilization rates of PV generation power of residential PV house in real-time pricing environment. Simulation results show that our proposed optimal load control strategy leads to significant reduction in the electricity costs and increase in the utilization rates of power generated by PV system in comparison with the conventional PV house. Therefore, the proposed optimal load control strategy can provide more economic benefit to end-user.

A study on the effect that the green roof has on the performance of PV module (옥상녹화가 PV모듈 발전량에 미치는 영향 고찰)

  • Yoo, Dong-Cheol;Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • This study aims to examine the effect of the combined application of green roof and PV system on the PV efficiency by measuring the temperature and performance of PV module in order to reduce the temperature on the roof using roof planting system and determine the potential of efficient increase in solar-light power generation. In the experimental methodology, either monocrystalline or polycrystalline PV module was installed in green roof or non-green roof, and then the surface temperature of PV was measured by TR-71U thermometer and again the performance, module body temperature, and conversion efficiency were measured by MP-160, TC selector MI-540, and PV selector MI-520, respectively. As a result, the average body temperature of monocrystalline module was lower by $6.5^{\circ}C$ in green roof than in non-green roof; that of polycrystalline module was lower by $8.8^{\circ}C$ in green roof than in non-green roof. In the difference of generation, the electricity generation of monocrystalline module in green roof was 46.13W, but that of polycrystalline module was 68.82 W, which indicated that the latter produced 22.69W more than the former.

Induced Production Analysis for Photovoltaic Power Generation Equipment in Korea using Input-Output Table 2009 (산업연관표 2009를 이용한 태양광발전설비산업의 생산유발효과분석)

  • Kim, Yoon-Kyung
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.8-17
    • /
    • 2012
  • The Korean government pushed ahead various policies to disseminate photovoltaic (PV), wind power, small hydro, bio-fuel, etc. Renewable energy system (RES) budget of the Korean government increased from 118 billion won of 2003 to 876.6 billion won of 2010. The R&D budgetary supports for RES increased by 6.8 times in the period 2003-2010. It is necessary to confirm RES budget expenditure that renewable energy promotion policy makes good performance evaluated in quantity level. This paper made Input-Output Table 2009 contains photovoltaic power generation equipment industry as a dependent sector and analyzed induced production effect by demand of photovoltaic power generation equipment industry. From the empirical analysis result, additional demand in photovoltaic power generation equipment induced 1.932 times of induced production in Korea. Each of industry sector has positive induced production from the additional demand in photovoltaic power generation equipment. Renewable energy promotion in photovoltaic power generation is considered together with industry policy as the option to sustain economic growth.