• Title/Summary/Keyword: PV(photovoltaic)

Search Result 1,344, Processing Time 0.038 seconds

A study of on the Efficiency Analysis for 3kW Utility interactive PV System (3kW 태양광발전시스템의 효율분석에 관한 연구)

  • Park, J.M.;Lim, H.W.;Choi, Y.O.;Lee, S.G.;Cho, G.B.;Baek, H.N
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.61-63
    • /
    • 2005
  • Utility interactive photovoltaic systems is one of the most premising applications of photovoltaic systems. These systems are employed in applications where utility service is already available. In this case, there is no need for battery storage because utility power may be used to supplement photovoltaic systems when the load exceeds available PV generation. The load receives electricity from both the photovoltaic array and the utility inter-tied. In this paper, Principle and operating characteristic of Utility Interconnected Photovoltaic System is presented. For the purpose of optimal utility Inter-tied photovoltaic system design and installation. It is that demonstrate throughout the installed 3 PV system respectively, 3kW utility interconnected residential system.

  • PDF

Status of the Global Photovoltaic Market and Distribution (세계 태양광발전 시장 및 보급 현황)

  • Yu, Gwon-Jong;Kim, Jun-Tae;Kang, Gi-Hwan;Park, Kyung-Eun;Kim, Hyun-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1744-1746
    • /
    • 2005
  • The photovoltaic(PV) industries have been increasing steadily above averaged 30%. Japan, Germany and USA have been playing a leading part in photovoltaic industry. In this paper, we review status of the global PV market and distribution around these countries. From the results, we will intend to supply the useful materials for domestic PV distribution.

  • PDF

결정질 실리콘 태양광 모듈의 Potential Induced Degradation 진단 분석

  • O, Won-Uk;Park, No-Chang;Cheon, Seong-Il
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.4 no.2
    • /
    • pp.14-24
    • /
    • 2018
  • The potential induced degradation (PID) phenomenon of crystalline silicon photovoltaic (PV) modules has been often found in outdoor PV systems until recently since firstly reported in 2010. Many studies have been conducted about the mechanism and the preventive methods, but systematic diagnosis of the PID has not been applied on-site. This paper focuses on analysis of 5 categories and 10 PID diagnosis methods using the monitoring data, light current-voltage, dark current-voltage, infrared and electroluminescence. We expect to contribute to improvement of power generation through PID diagnosis and troubleshooting in PV plants.

  • PDF

The Next Generation Photovoltaic Technology for Cost-Effective and High Efficiency (태양에너지를 이용한 차세대 저가·고효율 태양전지 기술)

  • Jeong, Chaehwan
    • Vacuum Magazine
    • /
    • v.3 no.2
    • /
    • pp.4-10
    • /
    • 2016
  • Photovoltaic technology has been intensively developed as one of the most powerful renewable energies, replacing a fossil fuel such as coal and petroleum. Every country in the world has emphasized on development of photovoltaic technology and our government has invested heavily in low cost and high efficiency. Korea institute of industrial technology (KITECH) has lastingly constructed PV R&D infra for development of cost-effective and high efficiency solar cells as well as support of commercialization in PV's small and medium enterprises. In this paper, we introduce the next generation PV R&D and infra in KITECH.

Performance of Wind-Photovoltaic Hybrid Generation System

  • Oh Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.319-324
    • /
    • 2005
  • This paper reports the performance of Wind-PV(Photovoltaic) hybrid system. The output power of PV is affected by the environmental factors such as solar radiation and cell temperature. Also, the output power of wind system is generated with wind power. Integration of Wind and PV resources, which are generally complementary, usually reduce the capacity of the battery. This paper includes discussion on system reliability, power quality and effects of the randomness of the wind and the solar radiation on system design.

A Battery Charger Using Photovoltaic Energy Harvesting with MPPT Control (빛 에너지 하베스팅을 이용한 MPPT 제어 기능을 갖는 배터리 충전기)

  • Yoon, Eun-Jung;Yang, Min-Jae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.201-209
    • /
    • 2015
  • This paper describes a battery charger using photovoltaic energy harvesting with MPPT control. The proposed circuit harvests maximum power from a PV(photovoltaic) cell by employing MPPT(Maximum Power Point Tracking) control and charges an external battery with the harvested energy. The charging state of the battery is controlled according to the signals from a battery management circuit. The MPPT control is implemented using linear relationship between the open-circuit voltage of a PV cell and its MPP voltage such that a pilot PV cell can track the MPP of a main PV cell in real time. The proposed circuit is designed in a $0.35{\mu}m$ CMOS process technology and its functionality has been verified through extensive simulations. The maximum efficiency of the designed entire system is 86.2% and the chip area including pads is $1.35mm{\times}1.2mm$.

Electric Circuit Analysis for PV Array on Short-Circuit Failure of Bypass Diode in PV Module (PV모듈의 바이패스 다이오드 단락 고장 시 태양광어레이 회로 특성분석)

  • Lee, Chung-Geun;Shin, Woo-Gyun;Lim, Jong Rok;Hwang, Hye-Mi;Ju, Young-Chul;Jung, Young-Seok;Kang, Gi-Hwan;Chang, Hyo-Sik;Ko, Suk-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.15-25
    • /
    • 2019
  • As the installation of photovoltaic systems increases, fire accidents of PV system grow every year. Most of PV system fires have been reported to be caused by electrical components. The majority of fire accidents occurred in combiner box, which is presumed to be short-circuit accidents due to dustproof and waterproof failures or heat deterioration of blocking diode. For this reason, the blocking diode installation became optional by revised PV combiner regulation. In this paper, according to the revised regulation, reverse current that generated by voltage mismatch was measured and analyzed in PV array without a blocking diode. The factors that cause voltage mismatch in array are assumed to be shaded PV module and short circuit failure of bypass diode. As the result of experiment, there is no reverse current to flow under shading condition in module, but reverse current flows on the failure of bypass diode in module. According to the module's I-V characteristic curve analysis, open voltage was slightly reduced due to operation of bypass diode in shading. However, it showed that open circuit voltage has decreased significantly in the failure of bypass diode. This indicates that the difference in open voltage reduction of voltage mismatch factor causes reverse current to flow.

A study on PV-AF-SPE system connected with utility (계통 연계형 PV-AF-SPE 시스템에 관한 연구)

  • Lee, Dong-Han;Lee, Suk-Ju;Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.117-120
    • /
    • 2006
  • In this paper an integrated model of PV-AF (Photovoltaic-Active Filter) and PV-SPE(Photovoltaic Solid Polymer Electrolyte) system using PSCAD/EMTDC were explained in detaiil. The main concept of PV-AF system starts from the 'harmonics'. In order to deliver power to utility, PV system essentially needs a converter system. Here PV-AF system adds the function of active filter to the converter system installed in PV system, which was introduced already in several papers. PV-SPE system has been studied as a replacement of existing hydrogen production technology that emits large amount of carbon dioxide into atmosphere. Until now, these two systems, PV-AF and PV-SPE, have been considered separately However, in this paper, characteristics and advantages of combined system are discussed in detail.

  • PDF

Implementation of cost-effective wireless photovoltaic monitoring module at panel level

  • Jeong, Jin-Doo;Han, Jinsoo;Lee, Il-Woo;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.664-676
    • /
    • 2018
  • Given the rapidly increasing market penetration of photovoltaic (PV) systems in many fields, including construction and housing, the effective maintenance of PV systems through remote monitoring at the panel level has attracted attention to quickly detect faults that cause reductions in yearly PV energy production, and which can reduce the whole-life cost. A key point of PV monitoring at the panel level is cost-effectiveness, as the installation of the massive PV panels that comprise PV systems is showing rapid growth in the market. This paper proposes an implementation method that involves the use of a panel-level wireless PV monitoring module (WPMM), and which assesses the cost-effectiveness of this approach. To maximize the cost-effectiveness, the designed WPMM uses a voltage-divider scheme for voltage metering and a shunt-resistor scheme for current metering. In addition, the proposed method offsets the effect of element errors by extracting calibration parameters. Furthermore, a design method is presented for portable and user-friendly PV monitoring, and demonstration results using a commercial 30-kW PV system are described.

Load Pattern Considerations of The Photovoltaic Lighting System by Using Computer-based Date Acquisition System (컴퓨터기반의 DAS를 적용한 태양광 조명설비의 운용패턴 고찰)

  • 황명근;허창수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Comparing to the conventional power systems, PV(photovoltaic) outdoor lighting system applications are evaluated as the most economical application. In this paper, we installed two PV lighting systems, which uses LPS(low pressure sodium) and electrodeless lame as their loads, and applied a computer-based data acquisition system using the Labview program for monitering purpose and effective operations, considering battery life time Also, we observed the generated power from the solar array, and energy losses comparing to its installed capacity. Because most PV system performance procedures have looked at the performance of the individual components and have deficiency of addressing how the integrated system works, we confirmed the decrease possibility of the solar amy capacity after analyzing the performance of the installed PV lighting systems.