• Title/Summary/Keyword: PV(photovoltaic)

Search Result 1,345, Processing Time 0.025 seconds

Currnet Status of Standardization on PV (태양광 발전기술의 표준화 동향 및 대응 방안)

  • Yun, Jae-Ho;Song, Jin-Soo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.142-144
    • /
    • 2006
  • 태양광발전기술의 국내 보급 및 세계 시장 진출에 있어서 표준화는 매우 중요한 요소이다 국제 표준화에 대응하여 국제 표준화 동향을 국내에 신속히 적용하고 국내 기술을 국제 규격에 제안하는 것이 그 핵심 내용이라고 할 수 있다. 국제 표준화는 IEC TC 82에서 담당하고 있으며 용어, 태양전지 모듈 시스템 주변기기 등 분야별로 WG에서 구체적인 논의를 진행하고 있다 현재까지 국내의 국제 표준화 대응은 미미하다고 할 수 있으나, 2004년도부터 정부에서 태양광을 포함한 신재생에너지 3대 중점분야 국제 표준화 5개년 계획을 수립하여 현재 추진하고 있다. 태양광 분야의 경우도 태양광 표준화 사업을 통해 태양광 표준화 전문가 회의를 구성하고 참가 전문가들이 IEC TC 82 총회 및 분야별 WG에 참석하고 있다 이후 계속적인 활동을 통해 국제표준화 동향을 국내 규격에 적응하고 규격 개정 작업에서부터 IEC TC 82 WG에서의 주도적인 활동이 전개되어야 한다

  • PDF

Feed-Foward Differential Power Processing Converter for Photovoltaic Systems using Multi-Output Flyback Converter Change Balancer (다출력 전압 밸런싱 회로를 적용한 태양광 발전용 피드포워드 차동전력조절기)

  • Jeon, Young-Tae;Kim, Kyoung-TaK;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.46-47
    • /
    • 2015
  • 본 논문은 태양광 발전 시스템의 차동 전력 조절 방식 중 Feed-Foward 방식을 적용한 다중 출력 플라이백 컨버터를 이용하여 DC_Link 다중 출력 전압을 균등화 하는 회로에 대한 내용이다. DC_Link가 여러 단으로 되어 있을 경우, 전압을 일정하게 맞추어 줄 필요가 있는데, 이를 차동 전력 조절기(Differential Power Processing converter)를 통해서 DC_Link 출력 전압을 균등화 할 수 있다. 스트링 컨버터인 부스트 컨버터의 스트링 전류를 제어 하여 부스트 컨버터의 전력과 DPP역할을 하는 다중 출력 플라이백 컨버터로 전달되는 전력을 조정가능하다. 이를 통하여 전압 균등화가 이루어지게 할 수 있고, 각 DPP 컨버터는 PV 전압 제어를 하여 MPPT 동작을 하게 된다. PSIM 시뮬레이션과 150W급 하드웨어 프로토타입을 제작해 실험을 통하여 검증 하였다.

  • PDF

Design and Control of Single-Phase Grid-Connected Photovoltaic (PV) Microinverter Using Bidirectional DC-DC Converter (양방향 DC-DC 컨버터를 이용한 단상 계통연계형 태양광 마이크로인버터의 설계 및 제어)

  • Lee, Kyung-Hwan;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.198-199
    • /
    • 2016
  • 본 논문은 단상 계통에 연결된 태양광 마이크로인버터의 설계와 제어 방법을 제안한다. 기존에는 고효율, 저비용, 높은 승압비를 얻기 위한 연구가 주로 수행되었다. 그런데 최근 태양광 발전 시스템이 증가함에 따라 계통의 안정성 확보를 위해 태양광 인버터에서도 무효 전력을 공급하도록 계통 규정이 바뀌고 있다. 이에 따라 본 논문에서는 결합 인덕터를 이용해 높은 승압비를 얻고 양방향으로 DC-DC 컨버터 단을 구성하여 무효 전력 제어가 가능하도록 한다. 제안된 마이크로인버터의 설계와 제어 방법을 설명하고 이를 실험적으로 확인한다.

  • PDF

Residential 10kWh Battery Energy Storage System (가정용 10kWh 배터리 에너지 저장 시스템)

  • Song, In-Beom;Jung, Doo-Yong;Kim, Dong-Seong;Lee, Su-Won;Seo, Kwang-Duk;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.224-225
    • /
    • 2010
  • This paper proposes a battery energy storage system using a photovoltaic generation system. The proposed system consists of a grid, battery and PV array. Considering a daily load profile, radiation and battery, operation modes are divided. An algorithm is presented based on modes. In the paper, operation modes and algorithms are verified through simulations.

  • PDF

High-Performance Schottky Junction for Self-Powered, Ultrafast, Broadband Alternating Current Photodetector

  • Lim, Jaeseong;Kumar, Mohit;Seo, Hyungtak
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.333-338
    • /
    • 2022
  • In this work, we developed silver nanowires and a silicon based Schottky junction and demonstrated ultrafast broadband photosensing behavior. The current device had a response speed that was ultrafast, with a rising time of 36 ㎲ and a falling time of 382 ㎲, and it had a high level of repeatability across a broad spectrum of wavelengths (λ = 365 to 940 nm). Furthermore, it exhibited excellent responsivity of 60 mA/W and a significant detectivity of 3.5 × 1012 Jones at a λ = 940 nm with an intensity of 0.2 mW cm-2 under zero bias operating voltage, which reflects a boost of 50 %, by using the AC PV effect. This excellent broadband performance was caused by the photon-induced alternative photocurrent effect, which changed the way the optoelectronics work. This innovative approach will open a second door to the potential design of a broadband ultrafast device for use in cutting-edge optoelectronics.

A Brief Review of Power Semiconductors for Energy Conversion in Photovoltaic Module Systems (태양광 모듈 시스템의 에너지 변환을 위한 전력 반도체에 관한 리뷰)

  • Hyeong Gi Park;Do Young Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.133-140
    • /
    • 2024
  • This study offers a comprehensive evaluation of the role and impact of advanced power semiconductors in solar module systems. Focusing on silicon carbide (SiC) and gallium nitride (GaN) materials, it highlights their superiority over traditional silicon in enhancing system efficiency and reliability. The research underscores the growing industry demand for high-performance semiconductors, driven by global sustainable energy goals. This shift is crucial for overcoming the limitations of conventional solar technology, paving the way for more efficient, economically viable, and environmentally sustainable solar energy solutions. The findings suggest significant potential for these advanced materials in shaping the future of solar power technology.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.

Oxidation characteristics of solder alloys for the photovoltaic module (태양전지 묘듈용 솔드 합금의 산화 특성)

  • Kim, Hyo Jae;Lee, Young Eun;Lee, Gu;Kang, Gi Hwan;Choi, Byung Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • Photovoltaic (PV) cell is considered as one of the finest ways to utilize the solar power. A study of improving solar cell's efficiency is important because the lifetime of solar cell is determined by photovoltaic module technology. Therefore, oxidation (and/or corrosion) of solder materials will be one of the primary yield and long-term reliability risk factor. Recently, the development of lead-free solder alloy has been done actively about lead-free solder alloys of the thermodynamic and mechanical properties. However, the oxidation behavior have rarely been investigated In this study, the oxidations of 60 wt% Sn-40 wt% Pb, 62 wt% Sn-36 wt% Pb -2 wt% Ag, 50wt% Sn-48 wt% Bi-2 wt% Ag alloys for the interconnect ribbon after exposure in atmosphere at $100^{\circ}C$ for several times were investigated. The wettability of 62 wt% Sn-36 wt% Pb-2 wt% Ag and 50 wt% Sn-48 wt% Bi-2 wt% Ag solders was also studied to compare with that of 60 wt% Sn-40 wt% Pb alloy. The results howed that the zero cross time and the wetting time of 50 wt% Sn-48 wt% Bi-2 wt% Ag solder were better than other two samples. The surface of tested samples was analyzed by XPS. The XPS result showed that in all samples, SnO grew first and then the mixture of SnO and $SnO_2$ was detected. $SnO_2$ grew predominantly for the long time aging. Moreover XPS depth profile analysis has found surface enrichment of tin oxide.

Evaluation of Power Generation Performance for Bifacial Si Photovoltaic Modules installed on Different Artificial Grass Floors (인조잔디 바닥종류에 따른 양면수광형 실리콘 태양광 모듈의 발전성능 평가)

  • Yoo, Younggyun;Seo, Yeongju;Park, Dohyun;Kim, Minsu;Jang, Hojun;Kwon, Young Hoon;Hwangbo, Chul;Kim, Woo Kyoung;Chang, Sungho
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • In this study, the outdoor evaluation test was performed to characterize the highly-reflective artificial grass to be used for bifacial photovoltaic (PV) power generation system. The 60-cell n-type Si monofacial and bifacial PV modules were employed, where two types of bifacial modules were equipped with split-type and box-type junction boxes, respectively. The results showed that the split-type junction box improved the rear-side power production and thus energy yield of bifacial module compared to the box-type junction box causing the shadow effect. Highly-reflective artificial grass achieved relatively high albedo of 0.18, and excellent bifacial gain of 33%, compared to conventional artificial grass with an albedo of 0.14-0.15, and bifacial gain of 29-30%.

Algorithm Deciding Offshore Cable Layout Valid for Integrated Power Supply Between Adjacent Islands (근거리 도서간 통합전력공급에 유효한 해저케이블 포설 방안 결정 알고리즘)

  • Kim, Mi-Young;Rho, Dae-Seok;Moon, Guk-Hyun;Seo, In-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.28-36
    • /
    • 2018
  • Islands are supplied with power from diesel generation or from photovoltaic power generation, and problems with offshore environmental impacts (age deterioration, salt pollution), environmental pollution (exhaust gas, noise, dust) and power generation costs (installation, maintenance) have increasingly emerged. In 2016, the cost recovery rate was only 27%, and deficits reached 73% on 65 islands managed by KEPCO. In terms of deficits, the costs incurred in the power generation sector accounted for 91%, with the ratio of fixed costs at about 60%. Analysis suggests that operating costs can be reduced with an optimal power supply system that improves power generation efficiency and makes operating systems more efficient. Therefore, it is possible to simplify fuel transportation and facility maintenance, because one island integrates the power plants of remote islands, and offshore cable is used to supply power to the other islands. From the economic evaluations in this paper, an algorithm deciding offshore cable layout validity for an integrated power supply between adjacent islands is presented. Simulation results based on the proposed algorithm confirmed that an integrated power supply is economical for existing stand-alone operations on islands having diesel generation, low peak power, and near distances.