• Title/Summary/Keyword: PUMP

Search Result 6,424, Processing Time 0.038 seconds

Vortex Cavitation from Baffle Plate and Pump Vibration in a Double-Suction Volute Pump

  • Sato, Toshiyuki;Nagahara, Takahide;Tanaka, Kazuhiro;Fuchiwaki, Masaki;Shimizu, Fumio;Inoue, Akira
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • This study highlights especially the mechanism of vortex cavitation occurrence from the end of the suction duct in a double-suction volute pump and pump oscillation which causes cavitation noise from the pump. In this study, full 3D numerical simulations have been performed using a commercial code inside the pump from the inlet of suction duct to the outlet of delivery duct. The numerical model is based on a combination of multiphase flow equations with the truncated version of the Rayleigh-Plesset model predicting the complicated growth and collapse process of cavity bubbles. The experimental investigations have also been performed on the cavitating flow with flow visualization to evaluate the numerical results.

Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

Performance Characteristics of Water-Chilling Heat Pump Using CO2 on Variation of Refrigerant Charge Amount (냉매 충전량에 따른 CO2용 수냉식 열펌프의 성능 특성에 관한 연구)

  • Son, Chang-Hyo;Yu, Tae-Guen;Jang, Seong-Il;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.558-566
    • /
    • 2007
  • The performance characteristics of water-chilling heat pump using $CO_2$ with respect to variation of refrigerant charge amount was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter-flow-type heat exchangers with concentric dual tubes, which are made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2400 mm length. The experimental results summarize as the followings : As the refrigerant charge ratio of $CO_2$ heat pump system increases, the discharge pressure and compressor ratio increases, but mass flow rate of refrigerant decreases. Also the compressor work increases with the increase of refrigerant charge ratio. However, the heating and cooling capacity of $CO_2$ heat pump decreases as the refrigerant charge ratio increases. The maximum heating COP of $CO_2$ heat pump system presented at 0.25 refrigerant charge ratio. It is possible to confirm the optimum charge ratio of $CO_2$ heat pump system by the viewpoint of heating COP.

Investigation of Experimental Results Using the Drying Model for a Heat Pump Dryer (열펌프 건조 해석 모델을 이용한 측정 결과의 분석)

  • Lee, Kong-Hoon;Kim, Ook-Joong;Kim, Jong-Ryul;Lee, Sang-Ryoul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2268-2273
    • /
    • 2008
  • The drying model has been used to obtain the fundamental information required to design the heat pump dryer with the simple thermodynamic model. In the model, the input conditions are crucial to obtain the acceptable results. The model includes one-stage heat pump cycle, simple drying process using the drying efficiency. The drying efficiency is defined with the conditions of inlet and outlet in the dryer. The experiment has been carried out in the pilot dryer with one-stage heat pump cycle. Refrigerant 134a is used in the heat pump cycle. In the dryer, some of drying air flows through the heat pump system and the rest of air bypasses the heat pump system and circulates through the drying chamber. Some operating conditions from the pilot dryer are used as input conditions of the model and the results are compared with experimental results for the validation.

  • PDF

Performance evaluation of bubble pump used on solar water heating system

  • Xuesong, Li;Park, Gi-Tae;Kim, Pil-Hwan;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.416-422
    • /
    • 2007
  • The application analysis of bubble pump on the domestic solar water heater system is presented. The system investigated in this study is a passive device, self pumping and self regulating. It was test to use the bubble pump on solar water heater system. The test experiment has been taken on the existed vacuum tube about the efficiency, working fluid temperature and pressure and circulated power. In order to check the working temperature and working pressure effectively, the bubble pump was test separated from the solar water heater. The equipment consists of the bubble pump, heater and heat exchanger. The main structure of bubble pump was design depend on the character of two phase flow. The complete system was instrumented to measure pressures, temperatures and their relationship with the solar radiation intensity. The theory analysis of design bubble pump has been given and the experiment result analysis has been included in the paper.

  • PDF

Development of Electronic Circulating Pump by Axial Air-gap Type Brushless Motor for Boiler (보일러용 평면대향형 브러시리스 전동기에 의한 전자식 순환 펌프의 개발)

  • 김상욱;김동춘;서성원;이창언;김영석;임창순
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.64-73
    • /
    • 1997
  • Canned type household circulating pump in the country almost depends on the act of imports, however it has disadvantage of low efficiency because an airgap of between rotor and stator is large and when the boiler is not used in a period of summer, a can and a rotor become adhered each other. Accordingly the pump is impossible to drive the initial state, and a lifetime of the pump gets shortening. To overcome these defects a electronic circulating pump by axial air-gap type brushless motor which is completely depart from the general idea for the conventional pump is developed. This paper is verified through experiments that the developed pump has good performance for reduction of size and noise, reo trenchment of cost, and improvement of efficiency in comparison with the conventional pump.

  • PDF

A Study on the Pump Performance Analysis by Modifying the Impeller for a Seawater Pump using CFD (임펠러 가공량에 따른 펌프성능의 해석적 연구)

  • Chang, Young Ki;Song, Woo Seok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2012
  • A seawater pumps in the nuclear power plant is responsible for providing cooling water to other components all the time. Because of the depreciation, the seawater pump with current impeller consumes too much power for maintaining the total head. Therefore the objective of this study is to reduce power with maintaining certain the total head by cutting the current impeller. By using a commercial CFD code, FLUENT, the overall performance of seawater pump with current and modified impeller was simulated. Also Affinity law was applied at pumps with various impeller diameter and evaluated the validity of the affinity law. The numerical results show that the pump efficiency is quite irrelevant to the diameters of the impellers and the pump efficiency becomes worse over the designed flow rate. And affinity law result and numerical one show good agreements at small change of impeller diameter. One of the impeller diameters was decided to modify and was applied to the nuclear power plant with the numerical study above.

Experimental Research on the Power Saving Effect Evaluation of a Variable Displacement Vane Pump for an Automatic Transmission (자동변속기용 가변 용량 베인 펌프의 파워 절감 효과 평가에 대한 실험적 연구)

  • Kim, Chulsoo;Bae, Chulyong;Kim, Chanjung;Kim, Kyusik;Son, Taekwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.1-7
    • /
    • 2014
  • A variable displacement vane pump is possible to improve the fuel economy by varying the pump capacity with a vane mechanism according to the engine operating speed range and reducing its driving torque. In general the experimental evaluation of the vane pump for the transmission has been performed mainly not with the vehicle or dynamometer test rig but with component test rig due to the implementation and safety problems. In this paper, in order to evaluate the performance of the developed vane pump as well as the compatibility with other rotary and hydraulic components of the target transmission, the transmission dynamometer based test rig is implemented where the developed pump is built into it and then the variable pump capacity and effect of power reduction are investigated experimentally.

Study on the Silicon Pump and Control System for TFT-LCD Manufacturing Process (TFT-LCD 생산공정을 위한 실리콘 펌프 및 제어시스템에 관한 연구)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3618-3622
    • /
    • 2012
  • In this study, the yield of the modules in LCD production lines, improving current TFT-LCD production process is essential for high-pressure silicone injection equipment, and precision control system was developed. This full-scale production of the future through the development of next-generation display production line is being prepared, being transferred to China in LCD production facilities can make the most of efficient equipment. Therefore, minimize the cost of new investment and help create the maximum effect to control the detailed behavior of the sequence H/W and S/W system was installed on the production line. In addition, Fast-evacuating the structure proposed for the Vacuum pump, Pump control circuit design and experimental results has been completed.

Study on the Simulation of Heat Pump Heating and Cooling Systems to Resident Building (숙박업소 건물의 히트펌프 냉난방 시스템 적용을 위한 시뮬레이션 연구)

  • Choi, Young-Don;Han, Seong-Ho;Cho, Sung-Hwan;Kim, Du-Sung;Um, Chul-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • In Korea, air source heat pump system is less efficient than conventional heat source facilities, such as ground source, river water, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large resident building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing of sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller & heater.