• Title/Summary/Keyword: PULSES Profile

Search Result 33, Processing Time 0.022 seconds

RF Pulse Design and Its Slice Profile Using SLR Algorithm (SLR 알고리즘을 이용한 RF 펄스 설계 및 그 SLICE PROFILE)

  • Yi, Y.;Joo, H.Y.;Baik, W.K.;Lee, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.471-474
    • /
    • 1997
  • Several selective excitation pulses are used in MRI. Because of the nonlinearity of the Block equation, the pulse problem is nonlinear generally. Recently, Shinnar & Le Roux have proposed a direct solution of this problem. In this paper, we introduce the SLR algorithm and design pulses using SLR algorithm. This SLR pulse produces a specified slice profile. For example, we demonstrate the sinc function pulse with piece wise constant duration ${\Delta}t$. Further, we will design $\pi/2$ pulse and slice profile.

  • PDF

A Study of Functional Evaluation in Stroke Patients (뇌졸중 환자의 기능평가에 대한 연구 -Modified Barthel Index 및 PULSES Profile에 의한 평가성적을 중심으로-)

  • Ahn Jung-Kuk;Lim Hye-Hyun;Ahn So-Yoon
    • The Journal of Korean Physical Therapy
    • /
    • v.4 no.1
    • /
    • pp.43-57
    • /
    • 1992
  • This study was conducted from August, 1980 to March, 9991 to the 40 subjects who were admitted to Kosin Medical Center and received rehabilitation treatment and discharged under the impression of stroke. The objectives are to evaluate the function of the activites of daily living and comprehensive function and find the status of rehabilitation treatment by Modified Barthel Index and PULSES Profile when first requested or rehabilitation treatment(T1), at 2 weeks after rehabilitation treatment(T2), at discharge(T3) and at the time of ambulatory treatment after 2 weeks(T4). The study materials were clinical charts and functional evaluation sheets, and the results are as follows : 21 subject$(52.5\%)$ were male, 19 subjects$(47.5\%)$ were female, and the age distribution was from 19 to 70 in age, the average age was 52.7. By the classification of diagnosis, 21 subjects$(52.5\%)$ were cerebral hemorrhage, 8 subjects$(20.2\%)$ were cerebral thrombosis, 6 subjects$(15.0\%)$ were cerebral embolism, and 5 subjects$(12.5\%)$ were cerebral infarction. The Barthel Index scores were 35.7, 54.5, 71.8, 88.7 on the average at T1, T2, T3, T4 respectively. The PULSES scores were 16.4, 13.7, 11.4, 8.7 on the average at T1, T2, T3, T4 respectively. Regarding the Pearson's correlation coefficient between the Barthel Index scores and the PULSES scores, it was -0.7991(P>0.001) at T1 and -0.8986(P>0.001) at T3, then beth of correlations were very high.

  • PDF

A New Tailored Sinc Pulse and Its Use for Multiband Pulse Design

  • Park, Jinil;Park, Jang-Yeon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • Purpose: Among RF pulses, a sinc pulse is typically used for slice selection due to its frequency-selective feature. When a sinc pulse is implemented in practice, it needs to be apodized to avoid truncation artifacts at the expense of broadening the transition region of the excited-band profile. Here a sinc pulse tailored by a new apodization function is proposed that produces a sharper transition region with well suppression of truncation artifacts in comparison with conventional tailored sinc pulses. A multiband pulse designed using this newly apodized sinc pulse is also suggested inheriting the better performance of the newly apodized sinc pulse. Materials and Methods: A new apodization function is introduced to taper a sinc pulse, playing a role to slightly shift the first zero-crossing of a tailored sinc pulse from the peak of the main lobe and thereby producing a narrower bandwidth as well as a sharper pass-band in the excitation profile. The newly apodized sinc pulse was also utilized to design a multiband pulse which inherits the performance of its constituent. Performances of the proposed sinc pulse and the multiband pulse generated with it were demonstrated by Bloch simulation and phantom imaging. Results: In both simulations and experiments, the newly apodized sinc pulse yielded a narrower bandwidth and a sharper transition of the pass-band profile with a desirable degree of side-lobe suppression than the commonly used Hanning-windowed sinc pulse. The multiband pulse designed using the newly apodized sinc pulse also showed the better performance in multi-slice excitation than the one designed with the Hanning-windowed sinc pulse. Conclusion: The new tailored sinc pulse proposed here provides a better performance in slice (or slab) selection than conventional tailored sinc pulses. Thanks to the availability of analytical expression, it can also be utilized for multiband pulse design with great flexibility and readiness in implementation, transferring its better performance.

Optical Parametric Chirped-pulse Amplification of Femtosecond Ti:sapphire Laser Pulses by Using a BBO Crystal

  • Cha, Yong-Ho;Lee, Ki-Tae;Nam, Seong-Mo;Yoo, Byoung-Duk;Rhee, Yong-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • We have characterized the optical parametric chirped-pulse amplification of femtosecond Ti:sapphire laser pulses by using a BBO crystal. It is numerically verified that a high gain and a broad gain bandwidth can be obtained with a 532-nm pump laser. The dependence of the gain profile of OPA on phase matching angles, pump intensity, and crystal length is numerically investigated. Experimental results shows that the temporal fluctuation of a pump laser causes the modulation of an amplified spectrum in OPCPA.

Practical Considerations of Arterial Spin Labeling MRI for Measuring the Multi-slice Perfusion in the Human Brain (스핀 라벨링 자기공명영상을 이용한 사람 뇌에서의 뇌 관류영상의 현실적 문제점을 향상 시키는 방법 연구)

  • Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In this work practical considerations of a pulsed arterial spin labeling MRI are presented to reliable multi-slice perfusion measurements In the human brain. Three parameters were considered in this study. First, In order to improve slice profile and Inversion efficiency of a labeling pulse a high power Inversion pulse of adiabatic hyperbolic secant was designed. A $900^{\circ}$ rotation of the flip angle was provided to make a good slice profile and excellent Inversion efficiency. Second, to minimize contributions of a residual magnetization be4ween Interleaved scans of control and labeling we tested three different conditions which were applied 1) only saturation pulses, 2) only spotter gradients, and 3) combinations of saturation pulses and spotter gradients Applications of bo4h saturation pulses and spoiler gradients minimized the residual magnetization. Finally, to find a minimum gap between a tagged plane and an imaging plane we tested signal changes of the subtracted image between control and labeled Images with varying the gap. The optimum gap was about 20mm. In conclusion, In order to obtain high quality of perfusion Images In human brain It Is Important to use optimum parameters. Before routinely using In clinical studios, we recommend to make optimizations of sequence parameters.

  • PDF

Unequal-path Low-coherence Interferometry Using Femtosecond Pulse Lasers for Surface-profile Metrology (펨토초 레이저를 이용한 형상 측정용 비동일 광경로 저결 맞음 간섭계)

  • Oh, Jeong-Seok;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.102-110
    • /
    • 2006
  • We discuss two possibilities of using femtosecond pulse lasers as a new interferometric light source for enhanced precision surface-profile metrology. First, a train of ultra-fast laser pulses yields repeated low temporal coherence, which allows unequal-path scanning interferometry, which is not feasible with white light. Second, the high spatial coherence of femtosecond pulse lasers enables large-sized optics to be tested in nonsymmetric configurations with relatively small-sized reference surfaces. These two advantages are verified experimentally using Fizeau and Twyman-Green type scanning interferometers.

Determination of the dispersion profile of a dispersion decreasing fiber and the input pulse amplitude for efficient adiabatic pulse compression (효과적인 단열 펄스 압축을 위한 분산감소 광섬유의 분산 특성 및 입력 펄스 진폭 결정)

  • 최봉수;서동선
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.123-130
    • /
    • 1997
  • We determine the dispersion profile of a dispersion decreasing fiber(DDF) for optimum pulse compression from a trade-off between high pulse compression and low pedestal power/short DDF length. We find that the optimum vlaue of the exponential dispersion decreasing factor .alpha. is 0.95 and that the corresponding optimum fiber length is 1.5 times of the initial soliton period. Passing through the dDF, ~10 times of pulse comparession ratio can be achieved without significant increase in pedestal power. To compress relatively broad pulses using a given DDF optimized at a specific pulse width, we also detemrine the optimum input pulse amplitude, as a function of input pulse width.

  • PDF

DANTE Fast MR imaging Using Frequency Modulation (주파수 변조를 이용한 MR DANTE 고속 영상법)

  • Ro, Y.M.;Chung, S.T.;Hong, I.K.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.42-44
    • /
    • 1995
  • The original DANTE sequence and its variations have limitation in excitation profile (a sinc function-like excitation) due to the finite duration of the DANTE pulsetrain. This sinc function-like selection profile excites only a small fraction of the spins in the pixel thereby results in poor signal to noise ratio (only about ${\sim}1%$ of normal MR imaging sequence). Therefore, this poor signal to noise ratio (SNR) has been the main drawback of the original DANTE sequence. To improve the signal to noise ratio, phases of individual RF pulses in the DANTE pulse train were modulated so that more spins in the object were excited ($1{\sim}3$). We have introduced a new FM (Frequency Modulation) DANTE sequence and analyzed the signal intensity and excitation profiles.

  • PDF

A numerical study on the characteristics of a thermal mass air flow sensor with periodic heating pulses (주기 발열 파형을 이용한 열식 질량 유량계의 특성에 관한 수치적 연구)

  • Jeon, Hong-Kyu;Oh, Dong-Wook;Park, Byung-Kyu;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2482-2487
    • /
    • 2007
  • Numerical simulations are conducted for the analysis of a thermal mass air flow sensor with periodic heating pulses on silicon-nitride ($Si_3N_4$) thin membrane structure. This study aims to find the locations of temperature sensors on the thin membrane and the heating pulse conditions, that the higher sensitivity can be achieved, for the development of a MEMS fabricated mass air flow sensor which is driven in periodic heating pulse. The simulations, thus, focus on the membrane temperature profile according to variation of the flow velocity, heating duration time and imposed power. The flow velocity of the simulations is ranging from 3 m/s to 35 m/s, heating duration time from 1 ms to 3 ms and imposed power from 50 mW to 90 mW. The corresponding Reynolds numbers vary from 1000 to 10000.

  • PDF

Temporal characterization of femtosecond laser pulses using spectral phase interferometry for direct electric-field reconstuction (주파수 위상 간섭계를 이용한 펨토초 레이저 펄스의 시간적 특성연구)

  • 강용훈;홍경한;남창희
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.219-224
    • /
    • 2001
  • Spectral phase interferometry for direct electric-field reconstruction (SPIDER) was fabricated and used to characterize pulses from a Ti:sapphire oscillator. In the SPIDER apparatus, two replicas of the input pulse were generated with a time delay of 200 fs and were upconverted by use of sum-frequency generation with a strongly chirped pulse using a 8-cm-long SFIO glass block at a 30-11m-thick type II BBO (p-BaBz04) crystal. The resulting interferogram was recorded with a UV-enhanced CCD array in the spectrometer. The spectral phase was retrieved by SPIDER algorithm in combination with independently measured pulse spectrum and the corresponding temporal intensity profile was reconstructed with a duration of 19 fs. As an independent cross-check of the accuracy of the method, we compared the interferometric autocorrelation (lAC) signal calculated from the SPIDER data with a separately measured lAC. The conventional, but unjustified, method of fitting a sechz pulse to the autocorrelation deceivingly yielded a pulse duration of 15 fs. This systematic underestimation of the pulse duration affirms the need for a complete characterization method. From the consideration in this paper, we concluded that the SPIDER could provide an accurate characterization of femtosecond pulses. ulses.

  • PDF